NeuRegenerate: A Framework for Visualizing Neurodegeneration.

Saeed Boorboor, Shawn Mathew, Mala Ananth, David Talmage, Lorna W Role, Arie E Kaufman
Author Information

Abstract

Recent advances in high-resolution microscopy have allowed scientists to better understand the underlying brain connectivity. However, due to the limitation that biological specimens can only be imaged at a single timepoint, studying changes to neural projections over time is limited to observations gathered using population analysis. In this article, we introduce NeuRegenerate, a novel end-to-end framework for the prediction and visualization of changes in neural fiber morphology within a subject across specified age-timepoints. To predict projections, we present neuReGANerator, a deep-learning network based on cycle-consistent generative adversarial network (GAN) that translates features of neuronal structures across age-timepoints for large brain microscopy volumes. We improve the reconstruction quality of the predicted neuronal structures by implementing a density multiplier and a new loss function, called the hallucination loss. Moreover, to alleviate artifacts that occur due to tiling of large input volumes, we introduce a spatial-consistency module in the training pipeline of neuReGANerator. Finally, to visualize the change in projections, predicted using neuReGANerator, NeuRegenerate offers two modes: (i) neuroCompare to simultaneously visualize the difference in the structures of the neuronal projections, from two age domains (using structural view and bounded view), and (ii) neuroMorph, a vesselness-based morphing technique to interactively visualize the transformation of the structures from one age-timepoint to the other. Our framework is designed specifically for volumes acquired using wide-field microscopy. We demonstrate our framework by visualizing the structural changes within the cholinergic system of the mouse brain between a young and old specimen.

References

  1. IEEE Trans Vis Comput Graph. 2018 Aug 20;: [PMID: 30136950]
  2. Front Neuroanat. 2014 May 19;8:37 [PMID: 24904306]
  3. Med Phys. 2018 Jun 14;: [PMID: 29901223]
  4. Neural Comput. 2010 Feb;22(2):511-38 [PMID: 19922289]
  5. IEEE Trans Vis Comput Graph. 2014 Dec;20(12):2369-78 [PMID: 26356951]
  6. Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit. 2020 Jun;2020:4695-4704 [PMID: 33456298]
  7. IEEE Trans Vis Comput Graph. 2018 Jan;24(1):853-861 [PMID: 28866534]
  8. Nat Methods. 2019 Dec;16(12):1323-1331 [PMID: 31686039]
  9. PLoS Comput Biol. 2005 Sep;1(4):e42 [PMID: 16201007]
  10. Comput Biol Med. 2014 Oct;53:85-93 [PMID: 25129020]
  11. IEEE Pac Vis Symp. 2012;:201-208 [PMID: 23584131]
  12. IEEE Trans Med Imaging. 2017 Jul;36(7):1533-1541 [PMID: 28287966]
  13. Brain Inform. 2018 Jun 6;5(2):3 [PMID: 29876679]
  14. Brain Inform. 2015 Sep;2(3):135-144 [PMID: 27747506]
  15. IEEE Trans Vis Comput Graph. 2008 Jul-Aug;14(4):863-76 [PMID: 18467760]
  16. IEEE Trans Med Imaging. 2018 Mar;37(3):781-791 [PMID: 28981409]
  17. IEEE Trans Vis Comput Graph. 2017 Jan;23(1):921-930 [PMID: 27875205]
  18. IEEE Trans Vis Comput Graph. 2018 Jan;24(1):994-1003 [PMID: 28866520]
  19. IEEE Trans Med Imaging. 2016 Sep;35(9):2107-2118 [PMID: 27076353]
  20. Proc Natl Acad Sci U S A. 1996 Feb 20;93(4):1591-5 [PMID: 11607632]
  21. Med Image Comput Comput Assist Interv. 2017 Sep;10435:417-425 [PMID: 30009283]
  22. IEEE Trans Med Imaging. 2019 Jan;38(1):69-78 [PMID: 30010551]
  23. eNeuro. 2019 Nov 1;6(6): [PMID: 31562178]
  24. Neuroinformatics. 2018 Oct;16(3-4):339-349 [PMID: 29435954]

Grants

  1. Z99 NS999999/Intramural NIH HHS

MeSH Term

Animals
Mice
Image Processing, Computer-Assisted
Computer Graphics
Brain
Head
Microscopy

Word Cloud

Created with Highcharts 10.0.0projectionsusingstructuresmicroscopybrainchangesframeworkneuReGANeratorneuronalvolumesvisualizedueneuralintroduceNeuRegeneratewithinacrossage-timepointsnetworklargepredictedlosstwostructuralviewRecentadvanceshigh-resolutionallowedscientistsbetterunderstandunderlyingconnectivityHoweverlimitationbiologicalspecimenscanimagedsingletimepointstudyingtimelimitedobservationsgatheredpopulationanalysisarticlenovelend-to-endpredictionvisualizationfibermorphologysubjectspecifiedpredictpresentdeep-learningbasedcycle-consistentgenerativeadversarialGANtranslatesfeaturesimprovereconstructionqualityimplementingdensitymultipliernewfunctioncalledhallucinationMoreoveralleviateartifactsoccurtilinginputspatial-consistencymoduletrainingpipelineFinallychangeoffersmodes:neuroComparesimultaneouslydifferenceagedomainsboundediineuroMorphvesselness-basedmorphingtechniqueinteractivelytransformationoneage-timepointdesignedspecificallyacquiredwide-fielddemonstratevisualizingcholinergicsystemmouseyoungoldspecimenNeuRegenerate:FrameworkVisualizingNeurodegeneration

Similar Articles

Cited By (1)