Similarities in Recognition Cues Lead to the Infiltration of Non-Nestmates in an Ant Species.

Ricardo Caliari Oliveira, Jelle van Zweden, Tom Wenseleers
Author Information
  1. Ricardo Caliari Oliveira: Laboratory of Socioecology and Social Evolution, Department of Biology, KU Leuven, Naamsestraat 59, 3000, Leuven, Belgium. ricardo.oliveira@evobio.eu. ORCID
  2. Jelle van Zweden: Laboratory of Socioecology and Social Evolution, Department of Biology, KU Leuven, Naamsestraat 59, 3000, Leuven, Belgium.
  3. Tom Wenseleers: Laboratory of Socioecology and Social Evolution, Department of Biology, KU Leuven, Naamsestraat 59, 3000, Leuven, Belgium.

Abstract

Chemical cues are among the most important information-sharing mechanisms in insect societies, in which cuticular hydrocarbons play a central role, e.g., from nestmate recognition to queen signaling. The nestmate recognition mechanism usually prevents intruders from taking advantage of the resources stored in the nest. However, nestmate recognition is not unconditionally effective, and foreign individuals can sometimes infiltrate unrelated nests and take advantage of the colony resources. In this study, we investigated the role of overall colony odor profiles on the ability of conspecific workers to drift into unrelated colonies. We hypothesized that drifters would have higher chances of success by infiltrating colonies with the odor profiles most similar to their own nest, avoiding being detected as non-nestmates. By performing a drifting bioassay, we found that workers of the ant Formica fusca infiltrated unrelated conspecific colonies at a rate of 2.4%, significantly infiltrating colonies displaying CHC profiles most similar to their natal nests. Notably, methyl branched hydrocarbons seem to play a role as recognition cues in this species. In addition, we show that environmental rather than genetic factors are responsible for most contributions on the CHC phenotype, presenting ca. of 50% and 27.5% of explained variation respectively, and playing a major role in how worker ants detect and prevent the infiltration of non-nestmates in the colony. Hence, relying on cuticular hydrocarbons similarities could be a profitably evolutionary strategy by which workers can identify conspecific colonies, evade detection by guards, and avoid competition with genetic relatives.

Keywords

References

  1. Aitchison J (1982) The statistical-analysis of compositional data. J Royal Statistic Soc Ser B-Methodol 44:139–177
  2. Akino T (2008) Chemical strategies to deal with ants: a review of mimicry, camouflage, propaganda, and phytomimesis by ants (Hymenoptera: Formicidae) and other arthropods. Myrmecol News 11:173–181
  3. Bargum K, Helanterä H, Sundström L (2007) Genetic population structure, queen supersedure and social polymorphism in a social Hymenoptera. J Evol Biol 20:1351–1360 [DOI: 10.1111/j.1420-9101.2007.01345.x]
  4. Bates D, Maechler M, Bolker B, Walker S (2016) lme4: linear mixed-effects models using Eigen and S4. R package version 1.1-11 R news
  5. Birmingham AL, Winston ML (2004) Orientation and drifting behaviour of bumblebees (Hymenoptera: Apidae) in commercial tomato greenhouses. Can J Zool 82:52–59. https://doi.org/10.1139/z03-201 [DOI: 10.1139/z03-201]
  6. Borowiec ML, Cover SP, Rabeling C (2021) The evolution of social parasitism in Formica ants revealed by a global phylogeny. Proc Natl Acad Sci U S A:118
  7. Bourke AFG, Franks NR (1995) Social evolution in ants. Princeton University Press, Princeton
  8. Brandt M, Foitzik S, Fischer-Blass B, Heinze J (2005) The coevolutionary dynamics of obligate ant social parasite systems—between prudence and antagonism. Biol Rev 80:251–267 [DOI: 10.1017/S1464793104006669]
  9. Chapman NC, Beekman M, Oldroyd BP (2009a) Worker reproductive parasitism and drift in the western honeybee Apis mellifera. Behav Ecol Sociobiol 64:419–427. https://doi.org/10.1007/s00265-009-0858-7 [DOI: 10.1007/s00265-009-0858-7]
  10. Chapman NC, Higgs JS, Wattanachaiyingcharoen W, Beekman M, Oldroyd BP (2009b) Worker reproductive parasitism in naturally orphaned colonies of the Asian red dwarf honey bee, Apis florea. Ins soc 57:163–167. https://doi.org/10.1007/s00040-009-0061-x [DOI: 10.1007/s00040-009-0061-x]
  11. Chapman NC, Nanork P, Gloag RS, Wattanachaiyingcharoen W, Beekman M, Oldroyd BP (2009c) Queenless colonies of the Asian red dwarf honey bee (Apis florea) are infiltrated by workers from other queenless colonies. Behav Ecol 20:817–820. https://doi.org/10.1093/beheco/arp065 [DOI: 10.1093/beheco/arp065]
  12. Dahbi A, Hefetz A, Cerdá X, Lenoir A (1999) Trophallaxis mediates uniformity of Colony odor in Cataglyphis iberica ants (Hymenoptera, Formicidae). J Insect Behav 12(559–567). https://doi.org/10.1023/a:1020975009450
  13. Davies N, Bourke AF, Brooke ML (1989) Cuckoos and parasitic ants: interspecific brood parasitism as an evolutionary arms race. Trends Ecol Evol 4:274–278 [DOI: 10.1016/0169-5347(89)90202-4]
  14. Dettner K, Liepert C (1994) Chemical mimicry and camouflage. Annu Rev Entomol 39:129–154 [DOI: 10.1146/annurev.en.39.010194.001021]
  15. Fiedler K, Hoelldobler B, Seufert P (1996) Butterflies and ants: the communicative domain. Experientia 52:14–24 [DOI: 10.1007/BF01922410]
  16. Frizzi F, Ciofi C, Dapporto L, Natali C, Chelazzi G, Turillazzi S, Santini G (2015) The rules of aggression: how genetic, chemical and spatial factors affect intercolony fights in a dominant species, the mediterranean acrobat ant Crematogaster scutellaris. PLoS One 10:e0137919 [DOI: 10.1371/journal.pone.0137919]
  17. Hamilton WD (1964a) The genetical evolution of social behaviour. I. J Theor Biol 7:1–16. https://doi.org/10.1016/0022-5193(64)90038-4 [DOI: 10.1016/0022-5193(64)90038-4]
  18. Hamilton WD (1964b) The genetical evolution of social behaviour. II. J Theor Biol 7:17–52. https://doi.org/10.1016/0022-5193(64)90039-6 [DOI: 10.1016/0022-5193(64)90039-6]
  19. Hannonen M, Sundström L (2003) Sociobiology: worker nepotism among polygynous ants. Nature 421:910–910 [DOI: 10.1038/421910a]
  20. Hannonen M, Helantera H, Sundstrom L (2004) Habitat age, breeding system and kinship in the ant Formica fusca. Mol Ecol 13:1579–1588. https://doi.org/10.1111/j.1365-294X.2004.02136.x [DOI: 10.1111/j.1365-294X.2004.02136.x]
  21. Helanterä H, Sundström L (2007) Worker policing and nest mate recognition in the ant Formica fusca. Behav Ecol Sociobiol 61:1143–1149. https://doi.org/10.1007/s00265-006-0327-5 [DOI: 10.1007/s00265-006-0327-5]
  22. Helanterä H, Lee YR, Drijfhout FP, Martin SJ (2011) Genetic diversity, colony chemical phenotype, and nest mate recognition in the ant Formica fusca. Behav Ecol. https://doi.org/10.1093/beheco/arr037
  23. Hlaváč P, Newton AF, Maruyama M (2011) World catalogue of the species of the tribe Lomechusini (Staphylinidae: Aleocharinae). Zootaxa 3075:1–151
  24. Hölldobler B, Wilson EO (1990) The ants. Belknap Press [DOI: 10.1007/978-3-662-10306-7]
  25. Hothorn T, Bretz F, Westfall P (2008) Simultaneous inference in general parametric models. Biom J 50:346–363 [DOI: 10.1002/bimj.200810425]
  26. Johnson BR, van Wilgenburg E, Tsutsui ND (2011) Nestmate recognition in social insects: overcoming physiological constraints with collective decision making. Behav Ecol Sociobiol 65:935–944. https://doi.org/10.1007/s00265-010-1094-x [DOI: 10.1007/s00265-010-1094-x]
  27. Katzerke A, Neumann P, Pirk CWW, Bliss P, Moritz RFA (2006) Seasonal nestmate recognition in the ant Formica exsecta. Behav Ecol Sociobiol 61:143–150. https://doi.org/10.1007/s00265-006-0245-6 [DOI: 10.1007/s00265-006-0245-6]
  28. Keller L, Ross KG (1998) Selfish genes: a green beard in the red fire ant. Nature 394:573–575 [DOI: 10.1038/29064]
  29. Lenoir A, D'Ettorre P, Errard C, Hefetz A (2001) Chemical ecology and social parasitism in ants. Annu Rev Entomol 46:573–599. https://doi.org/10.1146/annurev.ento.46.1.573 [DOI: 10.1146/annurev.ento.46.1.573]
  30. Leonhardt SD, Rasmussen C, Schmitt T (2013) Genes versus environment: geography and phylogenetic relationships shape the chemical profiles of stingless bees on a global scale. Proc R Soc Lond B Biol Sci 280:20130680
  31. Liersch S, Schmid-Hempel P (1998) Genetic variation within social insect colonies reduces parasite load. Proc R Soc Lond B Biol Sci 265:221–225 [DOI: 10.1098/rspb.1998.0285]
  32. Lopez-Vaamonde C, Koning JW, Brown RM, Jordan WC, Bourke AFG (2004) Social parasitism by male-producing reproductive workers in a eusocial insect. Nature 430:557–560. https://doi.org/10.1038/Nature02769 [DOI: 10.1038/Nature02769]
  33. Martin SJ, Helanterä H, Drijfhout FP (2008) Colony-specific hydrocarbons identify nest mates in two species of Formica ant. J Chem Ecol 34:1072–1080. https://doi.org/10.1007/s10886-008-9482-7 [DOI: 10.1007/s10886-008-9482-7]
  34. Meunier J, Delemont O, Lucas C (2011) Recognition in ants: social origin matters. PLoS One 6:e19347. https://doi.org/10.1371/journal.pone.0019347 [DOI: 10.1371/journal.pone.0019347]
  35. Mori A, Grasso DA, Le Moli F (2000) Raiding and foraging behavior of the blood-red ant, Formica sanguinea Latr. (Hymenoptera, Formicidae). J Insect Behav 13:421–438 [DOI: 10.1023/A]
  36. Muñoz F, Sanchez L (2019) Frequentist and Bayesian methods for breeders, quantitative geneticists and forest genetic resources analysts, 0.12–4 edn.,
  37. Nanork P, Paar J, Chapman NC, Wongsiri S, Oldroyd BP (2005) Entomology: Asian honeybees parasitize the future dead. Nature 437:829. https://doi.org/10.1038/437829a [DOI: 10.1038/437829a]
  38. Nanork P, Chapman NC, Wongsiri S, Lim J, Gloag RS, Oldroyd BP (2007) Social parasitism by workers in queenless and queenright Apis cerana colonies. Mol Ecol 16:1107–1114. https://doi.org/10.1111/j.1365-294X.2006.03207.x [DOI: 10.1111/j.1365-294X.2006.03207.x]
  39. Nash DR, Boomsma JJ (2008) Communication between hosts and social parasites. In: Hughes PED (ed) Sociobiology of communication: an interdisciplinary perspective. Oxford University Press, Oxford, pp 55–79 [DOI: 10.1093/acprof]
  40. Oksanen J, Kindt R, Legendre P, O’Hara B, Stevens MHH, Oksanen MJ, Suggests M (2007) The vegan package Community ecology package:631–637
  41. Oliveira RC, Oi CA, Vollet-Neto A, Wenseleers T (2016) Intraspecific worker parasitism in the common wasp, Vespula vulgaris. Anim Behav 113:79–85. https://doi.org/10.1016/j.anbehav.2015.12.025 [DOI: 10.1016/j.anbehav.2015.12.025]
  42. Oliveira RC, van Zweden J, Wenseleers T (2021) Similarities in recognition cues lead to the infiltration of non-nestmates in an ant species, V1 edn., Mendeley Data. https://doi.org/10.17632/stfbjy4vf7.1
  43. Pérez-Lachaud G, Valenzuela JE, Lachaud J-P (2011) Is increased resistance to parasitism at the origin of polygyny in a Mexican population of the ant Ectatomma tuberculatum (Hymenoptera: Formicidae)? Fla Entomol 94:677–684 [DOI: 10.1653/024.094.0333]
  44. Petrie M, Møller A (1991) Laying eggs in others' nests: intraspecific brood parasitism in birds. Trends Ecol Evol 6:315–320 [DOI: 10.1016/0169-5347(91)90038-Y]
  45. R Core Team (2020) R: A language and environment for statistical computing, R-4.0.0 edn. R Foundation for Statistical Computing, Vienna
  46. Ratnieks FLW, Visscher PK (1989) Worker policing in the honeybee. Nature 342:796–797. https://doi.org/10.1038/342796a0 [DOI: 10.1038/342796a0]
  47. Ratnieks FL, Wenseleers T (2005) Evolution. Policing insect societies. Science 307:54–56. https://doi.org/10.1126/science.1106934 [DOI: 10.1126/science.1106934]
  48. Ripley B, Venables B, Bates DM, Hornik K, Gebhardt A, Firth D, Ripley MB (2013) Package ‘MASS’ CRAN Repository http://cran.r-project.org/web/packages/MASS/MASS.pdf
  49. Schmid-Hempel P, Crozier RH (1999) Ployandry versus polygyny versus parasites. Philos Trans R Soc Lond Ser B Biol Sci 354:507–515 [DOI: 10.1098/rstb.1999.0401]
  50. Shykoff JA, Schmid-Hempel P (1991) Parasites and the advantage of genetic variability within social insect colonies. Proc R Soc Lond B Biol Sci 243:55–58 [DOI: 10.1098/rspb.1991.0009]
  51. Soroker V, Fresneau D, Hefetz A (1998) Formation of colony odor in ponerine ant Pachycondyla apicalis. J Chem Ecol 24:1077–1090 [DOI: 10.1023/A]
  52. Sumner S, Lucas E, Barker J, Isaac N (2007) Radio-tagging technology reveals extreme nest-drifting behavior in a eusocial insect. Curr Biol 17:140–145. https://doi.org/10.1016/j.cub.2006.11.064 [DOI: 10.1016/j.cub.2006.11.064]
  53. Takahashi J-i, Martin SJ, Ono M, Shimizu I (2010) Male production by non-natal workers in the bumblebee, Bombus deuteronymus (Hymenoptera: Apidae). J Ethol 28:61–66 [DOI: 10.1007/s10164-009-0155-y]
  54. Tschinkel WR (1996) A newly-discovered mode of colony founding among fire ants. Ins soc 43:267–276. https://doi.org/10.1007/bf01242928 [DOI: 10.1007/bf01242928]
  55. van Zweden J, d'Ettore P (2010) Nestmate recognition in social insects and the role of hydrocarbons. In: Blomquist GJ (ed) Insect hydrocarbons biology, biochemistry, and chemical ecology. Cambridge University Press, Cambridge, pp 222–243 [DOI: 10.1017/CBO9780511711909.012]
  56. Wenseleers T, Ratnieks FLW (2006) Comparative analysis of worker reproduction and policing in eusocial hymenoptera supports relatedness theory. Am Nat 168:E163–E179. https://doi.org/10.1086/508619 [DOI: 10.1086/508619]
  57. Wilson EO (1971) The insect societies. Belknap Press
  58. Wilson EO (1987) Causes of ecological success: the case of the ants. J Anim Ecol 56:1–9 [DOI: 10.2307/4795]
  59. Wilson AJ et al (2010) An ecologist’s guide to the animal model. J Anim Ecol 79:13–26 [DOI: 10.1111/j.1365-2656.2009.01639.x]
  60. Zanette LRS, Miller SDL, Faria CMA, Lopez-Vaamonde C, Bourke AFG (2014) Bumble bee workers drift to conspecific nests at field scales. Ecol Entomol 39:347–354. https://doi.org/10.1111/een.12109 [DOI: 10.1111/een.12109]

Grants

  1. 238127/2012-5/Conselho Nacional de Desenvolvimento Científico e Tecnológico
  2. 12R9619N/Fonds Wetenschappelijk Onderzoek
  3. 1502119N/Fonds Wetenschappelijk Onderzoek

MeSH Term

Animals
Ants
Biological Assay
Cues
Humans
Hydrocarbons
Odorants
Social Behavior

Chemicals

Hydrocarbons

Word Cloud

Created with Highcharts 10.0.0recognitioncoloniesrolehydrocarbonsnestmateunrelatedcolonyprofilesconspecificworkersChemicalcuescuticularplaysignalingadvantageresourcesnestcannestsodorinfiltratingsimilarnon-nestmatesCHCgeneticamongimportantinformation-sharingmechanismsinsectsocietiescentralegqueenmechanismusuallypreventsintruderstakingstoredHoweverunconditionallyeffectiveforeignindividualssometimesinfiltratetakestudyinvestigatedoverallabilitydrifthypothesizeddriftershigherchancessuccessavoidingdetectedperformingdriftingbioassayfoundantFormicafuscainfiltratedrate24%significantlydisplayingnatalNotablymethylbranchedseemspeciesadditionshowenvironmentalratherfactorsresponsiblecontributionsphenotypepresentingca50%275%explainedvariationrespectivelyplayingmajorworkerantsdetectpreventinfiltrationHencerelyingsimilaritiesprofitablyevolutionarystrategyidentifyevadedetectionguardsavoidcompetitionrelativesSimilaritiesRecognitionCuesLeadInfiltrationNon-NestmatesAntSpeciesDriftingbehaviorNestmate

Similar Articles

Cited By

No available data.