Current strategies of mechanical stimulation for maturation of cardiac microtissues.

Maria Carlos-Oliveira, Ferran Lozano-Juan, Paola Occhetta, Roberta Visone, Marco Rasponi
Author Information
  1. Maria Carlos-Oliveira: Department of Electronics, Information and Bioengineering, Politecnico di Milano, Via Ponzio 34/5, 20133 Milano, Italy.
  2. Ferran Lozano-Juan: Department of Electronics, Information and Bioengineering, Politecnico di Milano, Via Ponzio 34/5, 20133 Milano, Italy.
  3. Paola Occhetta: Department of Electronics, Information and Bioengineering, Politecnico di Milano, Via Ponzio 34/5, 20133 Milano, Italy.
  4. Roberta Visone: Department of Electronics, Information and Bioengineering, Politecnico di Milano, Via Ponzio 34/5, 20133 Milano, Italy.
  5. Marco Rasponi: Department of Electronics, Information and Bioengineering, Politecnico di Milano, Via Ponzio 34/5, 20133 Milano, Italy. ORCID

Abstract

The most advanced in vitro cardiac models are today based on the use of induced pluripotent stem cells (iPSCs); however, the maturation of cardiomyocytes (CMs) has not yet been fully achieved. Therefore, there is a rising need to move towards models capable of promoting an adult-like cardiomyocytes phenotype. Many strategies have been applied such as co-culture of cardiomyocytes, with fibroblasts and endothelial cells, or conditioning them through biochemical factors and physical stimulations. Here, we focus on mechanical stimulation as it aims to mimic the different mechanical forces that heart receives during its development and the post-natal period. We describe the current strategies and the mechanical properties necessary to promote a positive response in cardiac tissues from different cell sources, distinguishing between passive stimulation, which includes stiffness, topography and static stress and active stimulation, encompassing cyclic strain, compression or perfusion. We also highlight how mechanical stimulation is applied in disease modelling.

Keywords

References

  1. IEEE Trans Biomed Eng. 2019 Dec;66(12):3436-3443 [PMID: 30892197]
  2. Basic Res Cardiol. 2012 Nov;107(6):307 [PMID: 23099820]
  3. Circ Res. 2020 Apr 10;126(8):1086-1106 [PMID: 32271675]
  4. APL Bioeng. 2018 Oct 29;2(4):046102 [PMID: 31069324]
  5. Nature. 2011 Jun 08;474(7350):179-83 [PMID: 21654799]
  6. Med Eng Phys. 2014 Apr;36(4):496-501 [PMID: 24148238]
  7. Nature. 2018 Apr;556(7700):239-243 [PMID: 29618819]
  8. Biomaterials. 2014 Mar;35(9):2798-808 [PMID: 24424206]
  9. Biotechnol Prog. 2012 Nov-Dec;28(6):1551-9 [PMID: 22961835]
  10. Biofabrication. 2021 Apr 08;13(3): [PMID: 33561845]
  11. Circulation. 2016 Nov 15;134(20):1557-1567 [PMID: 27737958]
  12. Nat Commun. 2019 Sep 20;10(1):4325 [PMID: 31541103]
  13. Adv Drug Deliv Rev. 2016 Jan 15;96:156-60 [PMID: 26362920]
  14. Adv Healthc Mater. 2019 Feb;8(3):e1801146 [PMID: 30609312]
  15. Nat Rev Cardiol. 2020 Jun;17(6):341-359 [PMID: 32015528]
  16. Front Cell Dev Biol. 2021 Jan 21;8:625089 [PMID: 33553165]
  17. Biophys J. 2008 Oct;95(7):3479-87 [PMID: 18586852]
  18. Theranostics. 2021 Apr 15;11(13):6138-6153 [PMID: 33995650]
  19. Biosens Bioelectron. 2021 Mar 1;175:112875 [PMID: 33303322]
  20. Tissue Eng Part C Methods. 2011 Apr;17(4):463-73 [PMID: 21142417]
  21. Stem Cells. 2015 Jul;33(7):2148-57 [PMID: 25865043]
  22. Front Cell Dev Biol. 2020 May 25;8:334 [PMID: 32671058]
  23. Cell Stem Cell. 2020 Jun 4;26(6):862-879.e11 [PMID: 32459996]
  24. Stem Cell Reports. 2021 Sep 14;16(9):2169-2181 [PMID: 34019816]
  25. Nat Commun. 2019 Feb 19;10(1):834 [PMID: 30783104]
  26. SLAS Technol. 2017 Oct;22(5):536-546 [PMID: 28430559]
  27. Circ Res. 2011 Jun 24;109(1):47-59 [PMID: 21597009]
  28. Lab Chip. 2021 Oct 26;21(21):4177-4195 [PMID: 34545378]
  29. Biotechnol Bioeng. 2021 Aug;118(8):3128-3137 [PMID: 34019719]
  30. Proc Natl Acad Sci U S A. 2013 Jun 11;110(24):9770-5 [PMID: 23716679]
  31. Biotechnol Bioeng. 2016 Apr;113(4):859-69 [PMID: 26444553]
  32. Cardiovasc Res. 2006 Dec 1;72(3):375-83 [PMID: 17010955]
  33. Nanomedicine. 2021 Apr;33:102367 [PMID: 33549819]
  34. Adv Drug Deliv Rev. 2016 Jan 15;96:135-55 [PMID: 26232525]
  35. FEBS Lett. 2016 Aug;590(15):2482-93 [PMID: 27391414]
  36. Dis Model Mech. 2017 Sep 1;10(9):1039-1059 [PMID: 28883014]
  37. Front Bioeng Biotechnol. 2020 Jul 14;8:733 [PMID: 32766218]
  38. Lab Chip. 2016 Feb 7;16(3):599-610 [PMID: 26758922]
  39. ACS Biomater Sci Eng. 2019 Aug 12;5(8):3876-3888 [PMID: 33438427]
  40. Front Cardiovasc Med. 2019 Jun 26;6:87 [PMID: 31294032]
  41. J Tissue Eng Regen Med. 2021 May;15(5):503-512 [PMID: 33749089]
  42. PLoS One. 2016 Jan 19;11(1):e0146697 [PMID: 26784941]
  43. Sci Rep. 2020 Jul 9;10(1):11274 [PMID: 32647145]
  44. Science. 2015 Aug 28;349(6251):982-6 [PMID: 26315439]
  45. Integr Biol (Camb). 2018 Mar 1;10(3):174-183 [PMID: 29532839]
  46. Nat Commun. 2017 Nov 28;8(1):1825 [PMID: 29184059]
  47. Biomech Model Mechanobiol. 2020 Feb;19(1):291-303 [PMID: 31444593]
  48. Lab Chip. 2017 Sep 26;17(19):3264-3271 [PMID: 28832065]
  49. Nat Mater. 2017 Mar;16(3):303-308 [PMID: 27775708]

Word Cloud

Created with Highcharts 10.0.0stimulationmechanicalcardiaccardiomyocytesstrategiesmodelscellsmaturationapplieddifferentmicrotissuesadvancedvitrotodaybaseduseinducedpluripotentstemiPSCshoweverCMsyetfullyachievedThereforerisingneedmovetowardscapablepromotingadult-likephenotypeManyco-culturefibroblastsendothelialconditioningbiochemicalfactorsphysicalstimulationsfocusaimsmimicforcesheartreceivesdevelopmentpost-natalperioddescribecurrentpropertiesnecessarypromotepositiveresponsetissuescellsourcesdistinguishingpassiveincludesstiffnesstopographystaticstressactiveencompassingcyclicstraincompressionperfusionalsohighlightdiseasemodellingCurrentCardiacMaturationMechanical

Similar Articles

Cited By