Going Beyond the Limits of Classical Atomistic Modeling of Plasmonic Nanostructures.

Piero Lafiosca, Tommaso Giovannini, Michele Benzi, Chiara Cappelli
Author Information
  1. Piero Lafiosca: Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy.
  2. Tommaso Giovannini: Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy. ORCID
  3. Michele Benzi: Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy.
  4. Chiara Cappelli: Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy. ORCID

Abstract

Theoretical modeling of plasmonic phenomena is of fundamental importance for rationalizing experimental measurements. Despite the great success of classical continuum modeling, recent technological advances allowing for the fabrication of structures defined at the atomic level require to be modeled through atomistic approaches. From a computational point of view, the latter approaches are generally associated with high computational costs, which have substantially hampered their extensive use. In this work, we report on a computationally fast formulation of a classical, fully atomistic approach, able to accurately describe both metal nanoparticles and graphene-like nanostructures composed of roughly 1 million atoms and characterized by structural defects.

References

  1. Opt Lett. 1997 Aug 15;22(16):1205-7 [PMID: 18185795]
  2. Acc Chem Res. 2014 Jan 21;47(1):88-99 [PMID: 23965411]
  3. ACS Nano. 2018 Jan 23;12(1):585-595 [PMID: 29298379]
  4. ACS Nano. 2016 Feb 23;10(2):1995-2003 [PMID: 26718484]
  5. J Chem Phys. 2012 Jun 7;136(21):214103 [PMID: 22697526]
  6. J Phys Chem Lett. 2020 Sep 17;11(18):7595-7602 [PMID: 32805117]
  7. Opt Express. 2004 Jul 12;12(14):3149-55 [PMID: 19483836]
  8. J Chem Phys. 2010 Aug 21;133(7):074103 [PMID: 20726631]
  9. ACS Nano. 2013 Mar 26;7(3):2388-95 [PMID: 23390960]
  10. Nanoscale. 2019 Mar 28;11(13):6004-6015 [PMID: 30869089]
  11. J Chem Theory Comput. 2019 Aug 13;15(8):4312-4317 [PMID: 31348655]
  12. ACS Nano. 2020 Jan 28;14(1):28-117 [PMID: 31478375]
  13. Phys Rev Lett. 2003 Dec 19;91(25):253902 [PMID: 14754117]
  14. J Phys Chem Lett. 2019 Oct 3;10(19):5823-5829 [PMID: 31518133]
  15. Chem Soc Rev. 2014 Jun 7;43(11):3820-2 [PMID: 24728184]
  16. J Chem Phys. 2011 Oct 7;135(13):134103 [PMID: 21992278]
  17. Phys Chem Chem Phys. 2020 Oct 21;22(40):22864-22879 [PMID: 33043930]
  18. Front Chem. 2020 May 07;8:340 [PMID: 32457870]
  19. J Am Chem Soc. 2008 Jan 23;130(3):824-6 [PMID: 18163631]
  20. Angew Chem Int Ed Engl. 2009;48(12):2122-5 [PMID: 19206134]
  21. Opt Express. 2011 Oct 24;19(22):22029-106 [PMID: 22109053]
  22. J Chem Phys. 2019 Nov 7;151(17):174104 [PMID: 31703497]
  23. J Chem Theory Comput. 2019 Apr 9;15(4):2233-2245 [PMID: 30875213]
  24. Phys Chem Chem Phys. 2020 Jun 24;22(24):13467-13473 [PMID: 32520027]
  25. ACS Nano. 2012 Feb 28;6(2):1766-75 [PMID: 22217250]
  26. Nat Commun. 2015 Nov 10;6:8921 [PMID: 26555179]
  27. Acc Chem Res. 2015 Jul 21;48(7):1862-70 [PMID: 26056861]
  28. J Chem Theory Comput. 2011 Nov 8;7(11):3711-24 [PMID: 26598266]
  29. Chem Soc Rev. 2020 Aug 3;: [PMID: 32744278]
  30. Chem Rev. 2008 Feb;108(2):494-521 [PMID: 18229956]

Word Cloud

Created with Highcharts 10.0.0modelingclassicalatomisticapproachescomputationalTheoreticalplasmonicphenomenafundamentalimportancerationalizingexperimentalmeasurementsDespitegreatsuccesscontinuumrecenttechnologicaladvancesallowingfabricationstructuresdefinedatomiclevelrequiremodeledpointviewlattergenerallyassociatedhighcostssubstantiallyhamperedextensiveuseworkreportcomputationallyfastformulationfullyapproachableaccuratelydescribemetalnanoparticlesgraphene-likenanostructurescomposedroughly1millionatomscharacterizedstructuraldefectsGoingBeyondLimitsClassicalAtomisticModelingPlasmonicNanostructures

Similar Articles

Cited By