Modeling abundance, distribution, movement and space use with camera and telemetry data.

Richard B Chandler, Daniel A Crawford, Elina P Garrison, Karl V Miller, Michael J Cherry
Author Information
  1. Richard B Chandler: Warnell School of Forestry and Natural Resources, University of Georgia, Athens, Georgia, 30602, USA. ORCID
  2. Daniel A Crawford: Caesar Kleberg Wildlife Research Institute at Texas A&M University-Kingsville, Kingsville, Texas, 78363, USA.
  3. Elina P Garrison: Florida Fish and Wildlife Conservation Commission, Gainesville, Florida, 32601, USA.
  4. Karl V Miller: Warnell School of Forestry and Natural Resources, University of Georgia, Athens, Georgia, 30602, USA.
  5. Michael J Cherry: Caesar Kleberg Wildlife Research Institute at Texas A&M University-Kingsville, Kingsville, Texas, 78363, USA.

Abstract

Studies of animal abundance and distribution are often conducted independently of research on movement, despite the important links between processes. Movement can cause rapid changes in spatial variation in density, and movement influences detection probability and therefore estimates of abundance from inferential methods such as spatial capture-recapture (SCR). Technological developments including camera traps and GPS telemetry have opened new opportunities for studying animal demography and movement, yet statistical models for these two data types have largely developed along parallel tracks. We present a hierarchical model in which both datasets are conditioned on a movement process for a clearly defined population. We fitted the model to data from 60 camera traps and 23,572 GPS telemetry locations collected on 17 male white-tailed deer in the Big Cypress National Preserve, Florida, USA during July 2015. Telemetry data were collected on a 3-4 h acquisition schedule, and we modeled the movement paths of all individuals in the region with a Ornstein-Uhlenbeck process that included individual-specific random effects. Two of the 17 deer with GPS collars were detected on cameras. An additional 20 male deer without collars were detected on cameras and individually identified based on their unique antler characteristics. Abundance was 126 (95% CI: 88-177) in the 228 km region, only slightly higher than estimated using a standard SCR model: 119 (84-168). The standard SCR model, however, was unable to describe individual heterogeneity in movement rates and space use as revealed by the joint model. Joint modeling allowed the telemetry data to inform the movement model and the SCR encounter model, while leveraging information in the camera data to inform abundance, distribution and movement. Unlike most existing methods for population-level inference on movement, the joint SCR-movement model can yield unbiased inferences even if non-uniform sampling is used to deploy transmitters. Potential extensions of the model include the addition of resource selection parameters, and relaxation of the closure assumption when interest lies in survival and recruitment. These developments would contribute to the emerging holistic framework for the study of animal ecology, one that uses modern technology and spatio-temporal statistics to learn about interactions between behavior and demography.

Keywords

References

  1. Abernathy, H. N., D. A. Crawford, E. Garrison, R. Chandler, M. Conner, K. Miller, and M. J. Cherry. 2019. Deer movement and resource selection during Hurricane Irma: implications for extreme climatic events and wildlife. Proceedings of the Royal Society B: Biological Sciences 286:20192230.
  2. Andrew, M. E., and E. Fox. 2020. Modelling species distributions in dynamic landscapes: The importance of the temporal dimension. Journal of Biogeography 47:1510-1529.
  3. Augustine, B. C., J. A. Royle, M. J. Kelly, C. B. Satter, R. S. Alonso, E. E. Boydston, and K. R. Crooks. 2018. Spatial capture-recapture with partial identity: An application to camera traps. Annals of Applied Statistics 12:67-95.
  4. Beaver, J. T., C. A. Harper, L. I. Muller, P. S. Basinger, M. J. Goode, and F. T. Van Manen. 2016. Current and spatially explicit capture-recapture analysis methods for infrared triggered camera density estimation of white-tailed deer. Journal of the Southeastern Association of Fish and Wildlife Agencies 3:195-202.
  5. Blackwell, P. G. 1997. Random diffusion models for animal movement. Ecological Modelling 100:87-102.
  6. Blackwell, P. G., M. Niu, M. S. Lambert, and S. D. LaPoint. 2016. Exact Bayesian inference for animal movement in continuous time. Methods in Ecology and Evolution 7:184-195.
  7. Bonner, S., and M. Schofield. 2014. MC(MC)MC: exploring Monte Carlo integration within MCMC for mark-recapture models with individual covariates. Methods in Ecology and Evolution 5:1305-1315.
  8. Borchers, D. L. 2012. A non-technical overview of spatially explicit capture-recapture models. Journal of Ornithology 152:435-444.
  9. Borchers, D., G. Distiller, R. Foster, B. Harmsen, and L. Milazzo. 2014. Continuous-time spatially explicit capture-recapture models, with an application to a jaguar camera-trap survey. Methods in Ecology and Evolution 5:656-665.
  10. Borchers, D. L., and M. Efford. 2008. Spatially explicit maximum likelihood methods for capture-recapture studies. Biometrics 64:377-385.
  11. Brillinger, D. R. 2010. Modeling spatial trajectories. Pages 463-475 in A. Gelfand, P. Diggle, P. Guttorp, and M. Fuentes, editors. Handbook of spatial statistics. Chapman & Hall/CRC, Boca Raton, Florida, USA.
  12. Cagnacci, F., L. Boitani, R. A. Powell, and M. S. Boyce. 2010. Animal ecology meets GPS-based radiotelemetry: a perfect storm of opportunities and challenges. Philosophical Transactions of the Royal Society B: Biological Sciences 365:2157-2162.
  13. Chandler, R. B., K. Engebretsen, M. J. Cherry, E. P. Garrison, and K. V. Miller. 2018. Estimating recruitment from capture-recapture data by modeling spatio-temporal variation in birth and age-specific survival rates. Methods in Ecology and Evolution 9:2115-2130.
  14. Chandler, R. B., and J. A. Royle. 2013. Spatially explicit models for inference about density in unmarked or partially marked populations. Annals of Applied Statistics 7:936-954.
  15. Cherry, M. J., R. B. Chandler, E. P. Garrison, D. A. Crawford, B. D. Kelly, D. B. Shindle, K. G. Godsea, K. V. Miller, and L. M. Conner. 2018. Wildfire affects space use and movement of white-tailed deer in a tropical pyric landscape. Forest Ecology and Management 409:161-169.
  16. Clobert, J., M. Baguette, T. G. Benton, and J. M. Bullock. 2012. Dispersal ecology and evolution. Oxford University Press, Oxford, UK.
  17. Conroy, M. J., J. E. Anderson, S. L. Rathbun, and D. G. Krementz. 1996. Statistical inference on patch-specific survival and movement rates from marked animals. Environmental and Ecological Statistics 3:99-116.
  18. Crawford, D. A., M. J. Cherry, B. D. Kelly, E. P. Garrison, D. B. Shindle, L. M. Conner, R. B. Chandler, and K. V. Miller. 2019. Chronology of reproductive investment determines predation risk aversion in a felid-ungulate system. Ecology and Evolution 9:3264-3275.
  19. Dorazio, R. M., and M. Price. 2019. State-space models to infer movements and behavior of fish detected in a spatial array of acoustic receivers. Canadian Journal of Fisheries and Aquatic Sciences 76:543-550.
  20. Dunn, J. E., and P. S. Gipson. 1977. Analysis of radio telemetry data in studies of home range. Biometrics 33:85-101.
  21. Eddelbuettel, D., and C. Sanderson. 2014. Rcpparmadillo: Accelerating r with high-performance c++ linear algebra. Computational Statistics and Data Analysis 71:1054-1063.
  22. Efford, M. G. 2004. Density estimation in live-trapping studies. Oikos 106:598-610.
  23. Efford, M. G., and C. M. Hunter. 2018. Spatial capture-mark-resight estimation of animal population density. Biometrics 74:411-420.
  24. Efford, M. G., and G. Mowat. 2014. Compensatory heterogeneity in spatially explicit capture-recapture data. Ecology 95:1341-1348.
  25. Elith, J., et al. 2006. Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29:129-151.
  26. Ergon, T., and B. Gardner. 2014. Separating mortality and emigration: modelling space use, dispersal and survival with robust-design spatial capture-recapture data. Methods in Ecology and Evolution 5:1327-1336.
  27. Fieberg, J., J. Matthiopoulos, M. Hebblewhite, M. S. Boyce, and J. L. Frair. 2010. Correlation and studies of habitat selection: problem, red herring or opportunity? Philosophical Transactions of the Royal Society B: Biological Sciences 365:2233-2244.
  28. Fleming, C. H., W. F. Fagan, T. Mueller, K. A. Olson, P. Leimgruber, and J. M. Calabrese. 2015. Rigorous home range estimation with movement data: a new autocorrelated kernel density estimator. Ecology 96:1182-1188.
  29. Fleming, C. H., M. J. Noonan, E. P. Medici, and J. M. Calabrese. 2019. Overcoming the challenge of small effective sample sizes in home-range estimation. Methods in Ecology and Evolution 10:1679-1689.
  30. Forester, J. D., H. K. Im, and P. J. Rathouz. 2009. Accounting for animal movement in estimation of resource selection functions: sampling and data analysis. Ecology 90:3554-3565.
  31. Gaillard, J.-M., M. Hebblewhite, A. Loison, M. Fuller, R. Powell, M. Basille, and B. Van Moorter. 2010. Habitat-performance relationships: finding the right metric at a given spatial scale. Philosophical Transactions of the Royal Society B: Biological Sciences 365:2255-2265.
  32. Glennie, R., S. T. Buckland, R. Langrock, T. Gerrodette, L. Ballance, S. Chivers, and M. Scott. 2020. Incorporating animal movement into distance sampling. Journal of the American Statistical Association 116:107-115.
  33. Gurarie, E., and O. Ovaskainen. 2013. Towards a general formalization of encounter rates in ecology. Theoretical Ecology 6:189-202.
  34. Gurevitch, J., G. A. Fox, N. L. Fowler, C. H. Graham, and J. D. Thomson. 2016. Landscape demography: Population change and its drivers across spatial scales. Quarterly Review of Biology 91:459-485.
  35. Hanks, E. M., M. B. Hooten, D. S. Johnson, and J. T. Sterling. 2011. Velocity-based movement modeling for individual and population level inference. PLoS One 6:e22795.
  36. Harris, K. J., and P. G. Blackwell. 2013. Flexible continuous-time modelling for heterogeneous animal movement. Ecological Modelling 255:29-37.
  37. Hooten, M. B., F. E. Buderman, B. M. Brost, E. M. Hanks, and J. S. Ivan. 2016. Hierarchical animal movement models for population-level inference. Environmetrics 27:322-333.
  38. Hooten, M., D. Johnson, B. McClintock, and J. Morales. 2017. Animal movement: statistical models for telemetry data. Chapman & Hall/CRC, Boca Raton, Florida, USA.
  39. Hooten, M. B., H. R. Scharf, and J. M. Morales. 2019. Running on empty: Recharge dynamics from animal movement data. Ecology Letters 22:377-389.
  40. Horne, J. S., E. O. Garton, S. M. Krone, and J. S. Lewis. 2007. Analyzing animal movements using Brownian bridges. Ecology 88:2354-2363.
  41. Johnson, D. H. 1980. The comparison of usage and availability measurements for evaluating resource preference. Ecology 61:65-71.
  42. Johnson, D. S., D. L. Thomas, J. M. Ver Hoef, and A. Christ. 2008. A general framework for the analysis of animal resource selection from telemetry data. Biometrics 64:968-976.
  43. Jonsen, I. 2016. Joint estimation over multiple individuals improves behavioural state inference from animal movement data. Scientific Reports 6:1-9.
  44. Jouventin, P., and H. Weimerskirch. 1990. Satellite tracking of wandering albatrosses. Nature 343:746-748.
  45. King, R., B. T. McClintock, D. Kidney, and D. Borchers. 2016. Capture-recapture abundance estimation using a semi-complete data likelihood approach. Annals of Applied Statistics 10:264-285.
  46. Langrock, R., J. G. C. Hopcraft, P. G. Blackwell, V. Goodall, R. King, M. Niu, T. A. Patterson, M. W. Pedersen, A. Skarin, and R. S. Schick. 2014. Modelling group dynamic animal movement. Methods in Ecology and Evolution 5:190-199.
  47. Lima, S. L., and P. A. Zollner. 1996. Towards a behavioral ecology of ecological landscapes. Trends in Ecology & Evolution 11:131-135.
  48. Linden, D. W., A. P. Siren, and P. J. Pekins. 2018. Integrating telemetry data into spatial capture-recapture modifies inferences on multi-scale resource selection. Ecosphere 9:e02203.
  49. Manly, B. F. J., L. L. McDonald, D. L. Thomas, T. L. McDonald, and W. P. Erickson. 2002. Resource selection by animals: statistical design and analysis for field studies. Kluwer Academic Publishers, Dordrecht, The Netherlands.
  50. Matthiopoulos, J., J. Fieberg, G. Aarts, H. L. Beyer, J. M. Morales, and D. T. Haydon. 2015. Establishing the link between habitat selection and animal population dynamics. Ecological Monographs 85:413-436.
  51. McClintock, B. T., B. Abrahms, R. B. Chandler, P. B. Conn, S. J. Converse, R. L. Emmet, B. Gardner, N. J. Hostetter, and D. S. Johnson. 2022. An integrated path for spatial capture-recapture and animal movement modeling. Ecology. https://doi.org/10.1002/ecy.3473
  52. McClintock, B. T., R. King, L. Thomas, J. Matthiopoulos, B. J. McConnell, and J. M. Morales. 2012. A general discrete-time modeling framework for animal movement using multistate random walks. Ecological Monographs 82:335-349.
  53. Michelot, T., and P. G. Blackwell. 2019. State-switching continuous-time correlated random walks. Methods in Ecology and Evolution 10:637-649.
  54. Morales, J. M., P. R. Moorcroft, J. Matthiopoulos, J. L. Frair, J. G. Kie, R. A. Powell, E. H. Merrill, and D. T. Haydon. 2010. Building the bridge between animal movement and population dynamics. Philosophical Transactions of the Royal Society B: Biological Sciences 365:2289-2301.
  55. Murphy, S. M., D. T. Wilckens, B. C. Augustine, M. A. Peyton, and G. C. Harper. 2019. Improving estimation of puma (Puma concolor) population density: clustered camera-trapping, telemetry data, and generalized spatial mark-resight models. Scientific Reports 9:1-13.
  56. Nichols, J. D., and W. L. Kendall. 1995. The use of multi-state capture-recapture models to address questions in evolutionary ecology. Journal of Applied Statistics 22:835-846.
  57. O’Connell, A. F., J. D. Nichols, and K. U. Karanth. 2010. Camera traps in animal ecology: methods and analyses. Springer, New York, New York, USA.
  58. Pedersen, M. W., and K. C. Weng. 2013. Estimating individual animal movement from observation networks. Methods in Ecology and Evolution 4:920-929.
  59. R Core Team. 2021. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.
  60. Raabe, J. K., B. Gardner, and J. E. Hightower. 2014. A spatial capture-recapture model to estimate fish survival and location from linear continuous monitoring arrays. Canadian Journal of Fisheries and Aquatic Sciences 71:120-130.
  61. Royle, J. A., R. B. Chandler, K. D. Gazenski, and T. A. Graves. 2013a. Spatial capture-recapture models for jointly estimating population density and landscape connectivity. Ecology 94:287-294.
  62. Royle, J. A., R. B. Chandler, C. C. Sun, and A. K. Fuller. 2013b. Integrating resource selection information with spatial capture-recapture. Methods in Ecology and Evolution 4:520-530.
  63. Royle, J. A., R. B. Chandler, R. Sollmann, and B. Gardner. 2014. Spatial capture-recapture. Academic Press, Waltham, Massachusetts, USA.
  64. Royle, J. A., and R. M. Dorazio. 2008. Hierarchical modeling and inference in ecology: the analysis of data from populations, metapopulations and communities. Academic Press, Burlington, Massachusetts, USA.
  65. Royle, J. A., R. M. Dorazio, and W. A. Link. 2007. Analysis of multinomial models with unknown index using data augmentation. Journal of Computational and Graphical Statistics 16:67-85.
  66. Royle, J. A., A. K. Fuller, and C. Sutherland. 2016. Spatial capture-recapture models allowing Markovian transience or dispersal. Population Ecology 58:53-62.
  67. Schaub, M., and J. A. Royle. 2014. Estimating true instead of apparent survival using spatial Cormack-Jolly-Seber models. Methods in Ecology and Evolution 5:1316-1326.
  68. Sollmann, R., B. Gardner, R. B. Chandler, D. B. Shindle, D. P. Onorato, J. A. Royle, and A. F. O’Connell. 2013a. Using multiple data sources provides density estimates for endangered Florida panther. Journal of Applied Ecology 50:961-968.
  69. Sollmann, R., B. Gardner, A. W. Parsons, J. J. Stocking, B. T. McClintock, T. R. Simons, K. H. Pollock, and A. F. O’Connell. 2013b. A spatial mark-resight model augmented with telemetry data. Ecology 94:553-559.
  70. Spiegel, O., S. T. Leu, C. M. Bull, and A. Sih. 2017. What’s your move? Movement as a link between personality and spatial dynamics in animal populations. Ecology Letters 20:3-18.
  71. Tourani, M., P. Dupont, M. A. Nawaz, and R. Bischof. 2020. Multiple observation processes in spatial capture-recapture models: How much do we gain? Ecology 101:e03030.
  72. Tufto, J., R. Lande, T.-H. Ringsby, S. Engen, B.-E. Sather, T. R. Walla, and P. J. DeVries. 2012. Estimating Brownian motion dispersal rate, longevity and population density from spatially explicit mark-recapture data on tropical butterflies. Journal of Animal Ecology 81:756-769.
  73. Turchin, P. 1998. Quantitative analysis of movement: measuring and modeling population redistribution in animals and plants. Sinauer Associates, Sunderland, Massachusetts, USA.
  74. Whittington, J., M. Hebblewhite, and R. Chandler. 2018. Generalized spatial mark-resight models with an application to grizzly bears. Journal of Applied Ecology 55:157-168.
  75. Williams, B. K., J. D. Nichols, and M. J. Conroy. 2002. Analysis and management of animal populations. Academic Press, San Diego, California, USA.

MeSH Term

Animals
Deer
Ecology
Male
Models, Statistical
Movement
Telemetry

Word Cloud

Created with Highcharts 10.0.0movementmodeldataabundanceSCRcameratelemetryanimaldistributionspatialGPSdeercanmethodsdevelopmentstrapsdemographymodelsprocesspopulationcollected17maleregionOrnstein-Uhlenbeckcollarsdetectedcamerasstandardspaceusejointinformspatio-temporalStudiesoftenconductedindependentlyresearchdespiteimportantlinksprocessesMovementcauserapidchangesvariationdensityinfluencesdetectionprobabilitythereforeestimatesinferentialcapture-recaptureTechnologicalincludingopenednewopportunitiesstudyingyetstatisticaltwotypeslargelydevelopedalongparalleltrackspresenthierarchicaldatasetsconditionedclearlydefinedfitted6023572locationswhite-tailedBigCypressNationalPreserveFloridaUSAJuly2015Telemetry3-4 hacquisitionschedulemodeledpathsindividualsincludedindividual-specificrandomeffectsTwoadditional20withoutindividuallyidentifiedbaseduniqueantlercharacteristicsAbundance12695%CI:88-177228 kmslightlyhigherestimatedusingmodel:11984-168howeverunabledescribeindividualheterogeneityratesrevealedJointmodelingallowedencounterleveraginginformationUnlikeexistingpopulation-levelinferenceSCR-movementyieldunbiasedinferencesevennon-uniformsamplinguseddeploytransmittersPotentialextensionsincludeadditionresourceselectionparametersrelaxationclosureassumptioninterestliessurvivalrecruitmentcontributeemergingholisticframeworkstudyecologyoneusesmoderntechnologystatisticslearninteractionsbehaviorModelingbridgehomerangedynamicsutilizationdistributions

Similar Articles

Cited By