Solvent-Free Design of Biobased Non-isocyanate Polyurethanes with Ferroelectric Properties.

Valentina Sessini, Cuong Nguyen Thai, Harvey Amorín, Ricardo Jiménez, Cédric Samuel, Sylvain Caillol, Jérôme Cornil, Sébastien Hoyas, Sophie Barrau, Philippe Dubois, Philippe Leclère, Jean-Marie Raquez
Author Information
  1. Valentina Sessini: Laboratory of Polymeric and Composite Materials, Center of Innovation and Research in Materials and Polymers (CIRMAP), University of Mons-UMONS, Place du Parc 23, 7000 Mons, Belgium. ORCID
  2. Cuong Nguyen Thai: Laboratory for Chemistry of Novel Materials (SCMN), Center of Innovation and Research in Materials and Polymers (CIRMAP), University of Mons-UMONS, Place du Parc 23, 7000 Mons, Belgium.
  3. Harvey Amorín: Instituto de Ciencia de Materiales de Madrid (ICMM), CSIC, Cantoblanco, 28049 Madrid, Spain. ORCID
  4. Ricardo Jiménez: Instituto de Ciencia de Materiales de Madrid (ICMM), CSIC, Cantoblanco, 28049 Madrid, Spain.
  5. Cédric Samuel: IMT Lille Douai, Institut Mines-Télécom, Univ. Lille, Centre for Materials and Processes, F-59000 Lille, France. ORCID
  6. Sylvain Caillol: ICGM, Université de Montpellier, CNRS, ENSCM, UMR 5253, Place Eugène Bataillon CC 1700-Bâtiment 17, 34095 Montpellier cedex 5, France. ORCID
  7. Jérôme Cornil: Laboratory for Chemistry of Novel Materials (SCMN), Center of Innovation and Research in Materials and Polymers (CIRMAP), University of Mons-UMONS, Place du Parc 23, 7000 Mons, Belgium. ORCID
  8. Sébastien Hoyas: Laboratory for Chemistry of Novel Materials (SCMN), Center of Innovation and Research in Materials and Polymers (CIRMAP), University of Mons-UMONS, Place du Parc 23, 7000 Mons, Belgium.
  9. Sophie Barrau: Université de Lille, CNRS, INRAE, Centrale Lille, UMR 8207-UMET-Unité Matériaux et Transformations, F-59000 Lille, France. ORCID
  10. Philippe Dubois: Laboratory of Polymeric and Composite Materials, Center of Innovation and Research in Materials and Polymers (CIRMAP), University of Mons-UMONS, Place du Parc 23, 7000 Mons, Belgium.
  11. Philippe Leclère: Laboratory for Chemistry of Novel Materials (SCMN), Center of Innovation and Research in Materials and Polymers (CIRMAP), University of Mons-UMONS, Place du Parc 23, 7000 Mons, Belgium. ORCID
  12. Jean-Marie Raquez: Laboratory of Polymeric and Composite Materials, Center of Innovation and Research in Materials and Polymers (CIRMAP), University of Mons-UMONS, Place du Parc 23, 7000 Mons, Belgium.

Abstract

Increasing energy autonomy and lowering dependence on lithium-based batteries are more and more appealing to meet our current and future needs of energy-demanding applications such as data acquisition, storage, and communication. In this respect, energy harvesting solutions from ambient sources represent a relevant solution by unravelling these challenges and giving access to an unlimited source of portable/renewable energy. Despite more than five decades of intensive study, most of these energy harvesting solutions are exclusively designed from ferroelectric ceramics such as Pb(Zr,Ti)O and/or ferroelectric polymers such as polyvinylidene fluoride and its related copolymers, but the large implementation of these piezoelectric materials into these technologies is environmentally problematic, related with elevated toxicity and poor recyclability. In this work, we reveal that fully biobased non-isocyanate polyurethane-based materials could afford a sustainable platform to produce piezoelectric materials of high interest. Interestingly, these non-isocyanate polyurethanes (NIPUs) with ferroelectric properties could be successfully synthesized using a solvent-free reactive extrusion process on the basis of an aminolysis reaction between resorcinol bis-carbonate and different diamine extension agents. Structure-property relationships were established, indicating that the ferroelectric behavior of these NIPUs depends on the nanophase separation inside these materials. These promising results indicate a significant potential for fulfilling the requirements of basic connected sensors equipped with low-power communication technologies.

References

  1. Adv Mater. 2019 Aug;31(34):e1802898 [PMID: 30809883]
  2. Chem Rev. 2013 Jan 9;113(1):80-118 [PMID: 23082894]
  3. Chem Rev. 2016 Nov 23;116(22):14181-14224 [PMID: 27809503]
  4. ACS Macro Lett. 2016 Apr 19;5(4):424-429 [PMID: 35607241]
  5. J Mater Chem B. 2019 Feb 7;7(5):709-729 [PMID: 32254845]
  6. Soft Matter. 2018 Jun 6;14(22):4591-4602 [PMID: 29785441]
  7. ChemSusChem. 2019 Aug 8;12(15):3410-3430 [PMID: 31099968]
  8. Polym Chem. 2019 Sep 14;10(34):4665-4674 [PMID: 33093876]

Word Cloud

Created with Highcharts 10.0.0energyferroelectricmaterialscommunicationharvestingsolutionsrelatedpiezoelectrictechnologiesnon-isocyanateNIPUsIncreasingautonomyloweringdependencelithium-basedbatteriesappealingmeetcurrentfutureneedsenergy-demandingapplicationsdataacquisitionstoragerespectambientsourcesrepresentrelevantsolutionunravellingchallengesgivingaccessunlimitedsourceportable/renewableDespitefivedecadesintensivestudyexclusivelydesignedceramicsPbZrTiOand/orpolymerspolyvinylidenefluoridecopolymerslargeimplementationenvironmentallyproblematicelevatedtoxicitypoorrecyclabilityworkrevealfullybiobasedpolyurethane-basedaffordsustainableplatformproducehighinterestInterestinglypolyurethanespropertiessuccessfullysynthesizedusingsolvent-freereactiveextrusionprocessbasisaminolysisreactionresorcinolbis-carbonatedifferentdiamineextensionagentsStructure-propertyrelationshipsestablishedindicatingbehaviordependsnanophaseseparationinsidepromisingresultsindicatesignificantpotentialfulfillingrequirementsbasicconnectedsensorsequippedlow-powerSolvent-FreeDesignBiobasedNon-isocyanatePolyurethanesFerroelectricProperties

Similar Articles

Cited By