Driving electrochemical corrosion of implanted CoCrMo metal via oscillatory electric fields without mechanical wear.

Thomas S Welles, Jeongmin Ahn
Author Information
  1. Thomas S Welles: Department of Mechanical and Aerospace Engineering, Syracuse University, 727 E Washington St, Syracuse, NY, 13244-1240, USA. tswelles@syr.edu.
  2. Jeongmin Ahn: Department of Mechanical and Aerospace Engineering, Syracuse University, 727 E Washington St, Syracuse, NY, 13244-1240, USA.

Abstract

Decades of research have been dedicated to understanding the corrosion mechanisms of metal based implanted prosthetics utilized in modern surgical procedures. Focused primarily on mechanically driven wear, current fretting and crevice corrosion investigations have yet to precisely replicate the complex chemical composition of corrosion products recovered from patients' periprosthetic tissue. This work specifically targets the creation of corrosion products at the metal on metal junction utilized in modular hip prosthetics. Moreover, this manuscript serves as an initial investigation into the potential interaction between implanted CoCrMo metal alloy and low amplitude electrical oscillation, similar in magnitude to those which may develop from ambient electromagnetic radiation. It is believed that introduction of such an electrical oscillation may be able to initiate electrochemical reactions between the metal and surrounding fluid, forming the precursor to secondary wear particles, without mechanically eroding the metal's natural passivation layer. Here, we show that a low magnitude electrical oscillation (≤ 200 mV) in the megahertz frequency (10 Hz) range is capable of initiating corrosion on implanted CoCrMo without the addition of mechanical wear. Specifically, a 50 MHz, 200 mVpp sine wave generates corrosion products comprising of Cr, P, Ca, O, and C, which is consistent with previous literature on the analysis of failed hip prosthetics. These findings demonstrate that mechanical wear may not be required to initiate the production of chemically complex corrosion products.

References

  1. Front Bioeng Biotechnol. 2019 Jul 17;7:170 [PMID: 31380361]
  2. Nature. 2016 Sep 14;537(7620):433-5 [PMID: 27629646]
  3. J Am Coll Cardiol. 1998 Mar 1;31(3):623-8 [PMID: 9502645]
  4. Int Orthop. 2013 Oct;37(10):2081-8 [PMID: 23715954]
  5. Clin Orthop Relat Res. 2016 Oct;474(10):2143-4 [PMID: 27154529]
  6. Acta Biomater. 2020 Sep 15;114:449-459 [PMID: 32771589]
  7. Int J Cancer. 2011 Sep 15;129(6):1477-84 [PMID: 21792884]
  8. J Bone Joint Surg Am. 1994 Sep;76(9):1345-59 [PMID: 8077264]
  9. Clin Orthop Relat Res. 2012 Aug;470(8):2325-31 [PMID: 22692823]
  10. Sci Rep. 2017 Sep 8;7(1):10952 [PMID: 28887488]
  11. J Expo Sci Environ Epidemiol. 2015 Jan;25(1):37-44 [PMID: 23942394]
  12. J Orthop Res. 2013 Jul;31(7):1116-22 [PMID: 23440943]
  13. J Trace Elem Med Biol. 2018 Mar;46:128-137 [PMID: 29413102]
  14. Biomaterials. 2012 Aug;33(22):5487-503 [PMID: 22575833]
  15. Biosens Bioelectron. 2018 Nov 30;120:188-194 [PMID: 30193191]
  16. Acta Biomater. 2020 Jan 1;101:586-597 [PMID: 31678260]
  17. Clin Orthop Relat Res. 2016 Oct;474(10):2134-42 [PMID: 26987866]
  18. Clin Orthop Relat Res. 2017 Dec;475(12):3026-3043 [PMID: 28884275]
  19. Clin Orthop Relat Res. 2014 Feb;472(2):523-8 [PMID: 23572349]
  20. IEEE Trans Biomed Eng. 2004 Aug;51(8):1460-8 [PMID: 15311833]
  21. Med Eng Phys. 2018 Feb;52:1-9 [PMID: 29290499]
  22. J Arthroplasty. 2017 Jan;32(1):291-295 [PMID: 27491446]
  23. Clin Orthop Relat Res. 2018 Feb;476(2):261-278 [PMID: 29529655]
  24. Bioelectromagnetics. 2014 Feb;35(2):79-90 [PMID: 24375548]
  25. Front Bioeng Biotechnol. 2019 Jul 30;7:176 [PMID: 31417898]
  26. Mater Sci Eng C Mater Biol Appl. 2017 Oct 1;79:390-398 [PMID: 28629033]
  27. Acta Biomater. 2010 Nov;6(11):4439-46 [PMID: 20541630]
  28. Acta Orthop. 2013 Aug;84(4):437-41 [PMID: 23848217]
  29. Environ Res. 2016 Aug;149:105-112 [PMID: 27196609]
  30. Heliyon. 2021 Jul 28;7(8):e07686 [PMID: 34401573]
  31. Circulation. 2017 Feb 28;135(9):907-909 [PMID: 28242642]
  32. Int J Environ Res Public Health. 2019 Mar 17;16(6): [PMID: 30884917]
  33. Hip Pelvis. 2018 Sep;30(3):147-155 [PMID: 30202748]
  34. Phys Chem Chem Phys. 2013 Jan 21;15(3):746-56 [PMID: 23196425]
  35. Bioelectromagnetics. 1996;17(3):230-41 [PMID: 8809363]
  36. Nanomedicine. 2017 Apr;13(3):1205-1217 [PMID: 27888094]
  37. Med Biol Eng Comput. 1999 Nov;37(6):727-32 [PMID: 10723879]

Grants

  1. 2019265542/National Science Foundation

Word Cloud

Created with Highcharts 10.0.0corrosionmetalwearimplantedproductsprostheticsCoCrMoelectricaloscillationmaywithoutmechanicalutilizedmechanicallycomplexhiplowmagnitudeinitiateelectrochemicalDecadesresearchdedicatedunderstandingmechanismsbasedmodernsurgicalproceduresFocusedprimarilydrivencurrentfrettingcreviceinvestigationsyetpreciselyreplicatechemicalcompositionrecoveredpatients'periprosthetictissueworkspecificallytargetscreationjunctionmodularMoreovermanuscriptservesinitialinvestigationpotentialinteractionalloyamplitudesimilardevelopambientelectromagneticradiationbelievedintroductionablereactionssurroundingfluidformingprecursorsecondaryparticleserodingmetal'snaturalpassivationlayershow≤ 200 mVmegahertzfrequency10 HzrangecapableinitiatingadditionSpecifically50 MHz200mVppsinewavegeneratescomprisingCrPCaOCconsistentpreviousliteratureanalysisfailedfindingsdemonstraterequiredproductionchemicallyDrivingviaoscillatoryelectricfields

Similar Articles

Cited By