A Network-Based Methodology to Identify Subnetwork Markers for Diagnosis and Prognosis of Colorectal Cancer.

Olfat Al-Harazi, Ibrahim H Kaya, Achraf El Allali, Dilek Colak
Author Information
  1. Olfat Al-Harazi: Biostatistics, Epidemiology and Scientific Computing Department, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia.
  2. Ibrahim H Kaya: College of Medicine, Alfaisal University, Riyadh, Saudi Arabia.
  3. Achraf El Allali: African Genome Center, Mohammed VI Polytechnic University, Benguerir, Morocco.
  4. Dilek Colak: Biostatistics, Epidemiology and Scientific Computing Department, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia.

Abstract

The development of reliable methods for identification of robust biomarkers for complex diseases is critical for disease diagnosis and prognosis efforts. Integrating multi-omics data with protein-protein interaction (PPI) networks to investigate diseases may help better understand disease characteristics at the molecular level. In this study, we developed and tested a novel network-based method to detect subnetwork markers for patients with colorectal cancer (CRC). We performed an integrated omics analysis using whole-genome gene expression profiling and copy number alterations (CNAs) datasets followed by building a gene interaction network for the significantly altered genes. We then clustered the constructed gene network into subnetworks and assigned a score for each significant subnetwork. We developed a support vector machine (SVM) classifier using these scores as feature values and tested the methodology in independent CRC transcriptomic datasets. The network analysis resulted in 15 subnetwork markers that revealed several hub genes that may play a significant role in colorectal cancer, including , , , , , and . The 15-subnetwork classifier displayed over 98 percent accuracy in detecting patients with CRC. In comparison to individual gene biomarkers, subnetwork markers based on integrated multi-omics and network analyses may lead to better disease classification, diagnosis, and prognosis.

Keywords

References

  1. Sci Rep. 2017 Apr 4;7(1):641 [PMID: 28377632]
  2. Sci Rep. 2020 Mar 26;10(1):5487 [PMID: 32218465]
  3. Nucleic Acids Res. 2007 Jan;35(Database issue):D561-5 [PMID: 17145710]
  4. Nucleic Acids Res. 2012 Jan;40(Database issue):D857-61 [PMID: 22096227]
  5. Int J Mol Sci. 2018 Nov 23;19(12): [PMID: 30477151]
  6. Metabolites. 2020 May 15;10(5): [PMID: 32429287]
  7. BMC Cancer. 2017 Dec 13;17(1):844 [PMID: 29237416]
  8. Pathol Oncol Res. 2018 Jul;24(3):617-622 [PMID: 28803425]
  9. Methods Mol Biol. 2017;1666:539-556 [PMID: 28980264]
  10. Nucleic Acids Res. 2004 Jan 1;32(Database issue):D449-51 [PMID: 14681454]
  11. Sci Rep. 2018 May 14;8(1):7522 [PMID: 29760449]
  12. Diagn Pathol. 2017 Jan 13;12(1):4 [PMID: 28086821]
  13. Sci Rep. 2020 Feb 7;10(1):2123 [PMID: 32034170]
  14. Oncol Lett. 2020 Jan;19(1):388-398 [PMID: 31897151]
  15. J Psychiatr Res. 2018 Apr;99:62-68 [PMID: 29407288]
  16. J Integr Bioinform. 2014 Jun 13;11(2):236 [PMID: 24953305]
  17. Clin Cancer Res. 2019 Feb 15;25(4):1318-1330 [PMID: 30420446]
  18. Protein J. 2017 Feb;36(1):1-6 [PMID: 28108801]
  19. Front Genet. 2019 Mar 27;10:256 [PMID: 30972106]
  20. Cell Oncol (Dordr). 2016 Dec;39(6):491-510 [PMID: 27279102]
  21. Am J Pathol. 2011 Feb;178(2):537-47 [PMID: 21281787]
  22. Nat Protoc. 2009;4(1):44-57 [PMID: 19131956]
  23. PLoS Comput Biol. 2013;9(3):e1002975 [PMID: 23555212]
  24. Nat Rev Genet. 2011 Jan;12(1):56-68 [PMID: 21164525]
  25. Cells. 2019 Sep 08;8(9): [PMID: 31500382]
  26. Nat Protoc. 2013 Aug;8(8):1551-66 [PMID: 23868073]
  27. Methods. 2021 May;189:22-33 [PMID: 33096239]
  28. PLoS One. 2016 Oct 6;11(10):e0162669 [PMID: 27711126]
  29. Gene. 2017 Mar 10;604:33-40 [PMID: 27998790]
  30. BMC Bioinformatics. 2010 Feb 17;11:91 [PMID: 20163717]
  31. BMC Bioinformatics. 2016 Oct 6;17(Suppl 13):351 [PMID: 27766944]
  32. OMICS. 2020 Mar;24(3):160-171 [PMID: 32105570]
  33. Gene. 2019 Apr 15;692:119-125 [PMID: 30654001]
  34. Bioinformatics. 2020 Aug 1;36(15):4301-4308 [PMID: 32399562]
  35. PLoS One. 2020 May 26;15(5):e0233639 [PMID: 32453760]
  36. Nucleic Acids Res. 2005 Jan 1;33(Database issue):D418-24 [PMID: 15608229]
  37. BMC Bioinformatics. 2011 Nov 09;12:436 [PMID: 22070249]
  38. Front Genet. 2019 May 15;10:441 [PMID: 31156704]
  39. NPJ Digit Med. 2020 Mar 9;3:30 [PMID: 32195365]
  40. Comput Math Methods Med. 2019 Nov 2;2019:8418760 [PMID: 31915462]
  41. Oncotarget. 2016 Aug 1;8(56):95054-95065 [PMID: 29221110]
  42. Nucleic Acids Res. 2017 Jan 4;45(D1):D369-D379 [PMID: 27980099]
  43. PLoS One. 2013 Oct 30;8(10):e76251 [PMID: 24204606]
  44. Oncol Lett. 2017 Sep;14(3):3587-3593 [PMID: 28927116]
  45. Cancer Cell Int. 2020 Jan 29;20:30 [PMID: 32015690]
  46. Appl Bioinformatics. 2006;5(2):77-88 [PMID: 16722772]
  47. Medicine (Baltimore). 2018 Oct;97(40):e11780 [PMID: 30290589]
  48. Methods Mol Biol. 2020;2074:201-213 [PMID: 31583640]
  49. Cancer Biomark. 2016;16(3):459-65 [PMID: 27062703]
  50. Cold Spring Harb Mol Case Stud. 2017 Nov 21;3(6): [PMID: 28835367]
  51. BMC Cancer. 2010 Dec 23;10:691 [PMID: 21176237]
  52. Nat Rev Clin Oncol. 2011 Mar;8(3):131-3 [PMID: 21304502]
  53. PLoS One. 2014 Apr 15;9(4):e94328 [PMID: 24736319]
  54. Clin Gastroenterol Hepatol. 2019 Jun;17(7):1323-1331.e6 [PMID: 30056182]
  55. Curr Opin Cell Biol. 2005 Oct;17(5):559-64 [PMID: 16098726]
  56. Sci Rep. 2020 Jan 27;10(1):1212 [PMID: 31988390]
  57. BMC Cancer. 2018 Aug 6;18(1):793 [PMID: 30081850]
  58. Nucleic Acids Res. 2006 Jan 1;34(Database issue):D411-4 [PMID: 16381900]
  59. Bioinformatics. 2019 Sep 15;35(18):3441-3452 [PMID: 30887029]
  60. Gut. 2012 Nov;61(11):1560-7 [PMID: 22213796]
  61. EXCLI J. 2019 Jul 17;18:530-539 [PMID: 31611737]
  62. Nat Biotechnol. 2004 Jun;22(6):656-8; author reply 658 [PMID: 15175677]
  63. Interdiscip Sci. 2020 Jun;12(2):155-168 [PMID: 32056139]
  64. Nucleic Acids Res. 2002 Apr 1;30(7):1575-84 [PMID: 11917018]
  65. Nat Rev Cancer. 2018 May;18(5):296-312 [PMID: 29546880]
  66. Adv Med Sci. 2011;56(1):39-43 [PMID: 21555304]
  67. Cancer Cell Int. 2019 Jan 5;19:6 [PMID: 30627052]
  68. J Genet Genomics. 2016 Jun 20;43(6):349-67 [PMID: 27318646]
  69. Nucleic Acids Res. 2019 Jan 8;47(D1):D419-D426 [PMID: 30407594]
  70. OMICS. 2019 Mar;23(3):138-151 [PMID: 30883301]
  71. Epigenomics. 2020 Jul;12(14):1215-1237 [PMID: 32812439]
  72. PLoS One. 2013 May 21;8(5):e63204 [PMID: 23704896]
  73. Nucleic Acids Res. 2017 Sep 19;45(16):e151 [PMID: 28934488]
  74. CA Cancer J Clin. 2018 Nov;68(6):394-424 [PMID: 30207593]
  75. J Comput Biol. 2005 Jul-Aug;12(6):882-93 [PMID: 16108723]
  76. J Cancer. 2019 Aug 28;10(21):5223-5233 [PMID: 31602273]
  77. Biomed Res Int. 2015;2015:713953 [PMID: 26185761]
  78. J Clin Oncol. 2011 Dec 10;29(35):4620-6 [PMID: 22067406]
  79. Mol Cancer. 2010 Jun 12;9:146 [PMID: 20540791]

Word Cloud

Created with Highcharts 10.0.0subnetworknetworkgenediseasemaymarkerscolorectalcancerCRCbiomarkersdiseasesdiagnosisprognosismulti-omicsinteractionbetterdevelopedtestedpatientsintegratedomicsanalysisusingdatasetsgenessignificantclassifierdevelopmentreliablemethodsidentificationrobustcomplexcriticaleffortsIntegratingdataprotein-proteinPPInetworksinvestigatehelpunderstandcharacteristicsmolecularlevelstudynovelnetwork-basedmethoddetectperformedwhole-genomeexpressionprofilingcopynumberalterationsCNAsfollowedbuildingsignificantlyalteredclusteredconstructedsubnetworksassignedscoresupportvectormachineSVMscoresfeaturevaluesmethodologyindependenttranscriptomicresulted15revealedseveralhubplayroleincluding15-subnetworkdisplayed98percentaccuracydetectingcomparisonindividualbasedanalysesleadclassificationNetwork-BasedMethodologyIdentifySubnetworkMarkersDiagnosisPrognosisColorectalCancerbiomarkerprognostic

Similar Articles

Cited By