A roadmap for multi-omics data integration using deep learning.

Mingon Kang, Euiseong Ko, Tesfaye B Mersha
Author Information
  1. Mingon Kang: Department of Computer Science at the University of Nevada, Las Vegas, NV, USA. ORCID
  2. Euiseong Ko: Department of Computer Science at the University of Nevada, Las Vegas, NV, USA. ORCID
  3. Tesfaye B Mersha: Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH, USA. ORCID

Abstract

High-throughput next-generation sequencing now makes it possible to generate a vast amount of multi-omics data for various applications. These data have revolutionized biomedical research by providing a more comprehensive understanding of the biological systems and molecular mechanisms of disease development. Recently, deep learning (DL) algorithms have become one of the most promising methods in multi-omics data analysis, due to their predictive performance and capability of capturing nonlinear and hierarchical features. While integrating and translating multi-omics data into useful functional insights remain the biggest bottleneck, there is a clear trend towards incorporating multi-omics analysis in biomedical research to help explain the complex relationships between molecular layers. Multi-omics data have a role to improve prevention, early detection and prediction; monitor progression; interpret patterns and endotyping; and design personalized treatments. In this review, we outline a roadmap of multi-omics integration using DL and offer a practical perspective into the advantages, challenges and barriers to the implementation of DL in multi-omics data.

Keywords

References

  1. OMICS. 2018 Oct;22(10):630-636 [PMID: 30124358]
  2. J Mach Learn Res. 2019;20: [PMID: 34335110]
  3. Front Genet. 2020 Jan 08;10:1305 [PMID: 31969903]
  4. Nat Biotechnol. 2008 Mar;26(3):256 [PMID: 18327223]
  5. Bioinformatics. 2020 May 1;36(9):2888-2895 [PMID: 31985775]
  6. Mol Pharm. 2016 Jul 5;13(7):2524-30 [PMID: 27200455]
  7. Methods. 2021 May;189:74-85 [PMID: 32763377]
  8. Methods. 2019 Aug 15;166:66-73 [PMID: 30853547]
  9. Brief Bioinform. 2009 May;10(3):315-29 [PMID: 19307287]
  10. Biomolecules. 2020 Oct 19;10(10): [PMID: 33086649]
  11. J Intern Med. 2016 Mar;279(3):229-40 [PMID: 26891944]
  12. Nat Rev Genet. 2013 Feb;14(2):89-99 [PMID: 23269463]
  13. Nat Clin Pract Oncol. 2007 Sep;4(9):516-25 [PMID: 17728710]
  14. PLoS One. 2019 Dec 5;14(12):e0219102 [PMID: 31805048]
  15. J Nucl Cardiol. 2014 Aug;21(4):686-94 [PMID: 24810431]
  16. Int J Mol Sci. 2019 Sep 26;20(19): [PMID: 31561483]
  17. Gigascience. 2020 Jul 1;9(7): [PMID: 32649756]
  18. PLoS One. 2019 Mar 21;14(3):e0213584 [PMID: 30897097]
  19. Bioinformatics. 2020 Mar 1;36(5):1542-1552 [PMID: 31591638]
  20. Biomark Insights. 2015 Sep 07;10(Suppl 4):1-6 [PMID: 26396492]
  21. Nucleic Acids Res. 2023 Jul 7;51(12):e67 [PMID: 37224538]
  22. Nat Commun. 2020 Aug 3;11(1):3877 [PMID: 32747659]
  23. BMC Bioinformatics. 2019 Oct 28;20(1):527 [PMID: 31660856]
  24. BMC Bioinformatics. 2018 Dec 17;19(1):510 [PMID: 30558539]
  25. Eur Respir J. 2017 Mar 29;49(3): [PMID: 28356371]
  26. Nature. 2015 May 28;521(7553):436-44 [PMID: 26017442]
  27. Sci Rep. 2021 Jan 15;11(1):1550 [PMID: 33452365]
  28. Front Genet. 2018 Oct 18;9:477 [PMID: 30405689]
  29. Proc Natl Acad Sci U S A. 2019 Jul 9;116(28):13996-14001 [PMID: 31221760]
  30. Methods. 2019 Aug 15;166:4-21 [PMID: 31022451]
  31. Sci Rep. 2017 Sep 15;7(1):11707 [PMID: 28916782]
  32. Bioinformatics. 2021 Sep 29;37(18):2963-2970 [PMID: 33734318]
  33. Biosci Rep. 2020 Dec 01;: [PMID: 33258470]
  34. J Allergy Clin Immunol. 2015 Jan;135(1):31-42 [PMID: 25468194]
  35. IEEE Trans Med Imaging. 2022 Apr;41(4):757-770 [PMID: 32881682]
  36. Proc Natl Acad Sci U S A. 2019 Oct 29;116(44):22071-22080 [PMID: 31619572]
  37. Brief Bioinform. 2017 Sep 1;18(5):851-869 [PMID: 27473064]
  38. BMC Bioinformatics. 2020 Jan 6;21(1):7 [PMID: 31906867]
  39. Methods Mol Biol. 2021;2194:223-238 [PMID: 32926369]
  40. Genomics. 2020 Jul;112(4):2833-2841 [PMID: 32234433]
  41. Int J Radiat Oncol Biol Phys. 2021 Jul 1;110(3):893-904 [PMID: 33539966]
  42. High Throughput. 2019 Jan 18;8(1): [PMID: 30669303]
  43. Front Genet. 2020 Oct 15;11:570255 [PMID: 33193667]
  44. IEEE Trans Pattern Anal Mach Intell. 2019 Oct;41(10):2410-2423 [PMID: 30387725]
  45. Genes (Basel). 2019 Mar 21;10(3): [PMID: 30901858]
  46. Cell. 2019 Jan 24;176(3):535-548.e24 [PMID: 30661751]
  47. Genes (Basel). 2019 Jan 28;10(2): [PMID: 30696086]
  48. Nat Commun. 2019 Aug 23;10(1):3834 [PMID: 31444360]
  49. J Asthma Allergy. 2017 Nov 07;10:293-301 [PMID: 29158683]
  50. Mol Cell Proteomics. 2016 Aug;15(8):2525-36 [PMID: 27099341]
  51. BMC Bioinformatics. 2020 Jun 9;21(1):235 [PMID: 32517697]
  52. J Breast Imaging. 2021 Jan 26;3(1):12-24 [PMID: 38424845]
  53. Clin Rev Allergy Immunol. 2021 Apr;60(2):200-219 [PMID: 32378146]
  54. Ann Am Thorac Soc. 2017 Dec;14(Supplement_6):S445-S451 [PMID: 29053026]
  55. BMC Bioinformatics. 2020 Apr 16;21(1):146 [PMID: 32299344]
  56. Front Immunol. 2018 Dec 12;9:2727 [PMID: 30631320]
  57. Bioinform Biol Insights. 2019 Oct 13;13:1177932219881435 [PMID: 31662603]
  58. Proc Natl Acad Sci U S A. 2021 Sep 28;118(39): [PMID: 34526388]
  59. Nucleic Acids Res. 2016 Jan 4;44(D1):D1-6 [PMID: 26740669]
  60. Bioinformatics. 2019 Apr 15;35(8):1278-1283 [PMID: 30202885]
  61. Clin Cancer Res. 2018 Mar 15;24(6):1248-1259 [PMID: 28982688]
  62. Nat Rev Genet. 2004 May;5(5):376-87 [PMID: 15143320]
  63. BMC Med Inform Decis Mak. 2020 Sep 15;20(1):225 [PMID: 32933515]
  64. Bioinform Biol Insights. 2020 Jan 31;14:1177932219899051 [PMID: 32076369]
  65. J Comput Biol. 2016 May;23(5):322-36 [PMID: 26799292]
  66. Clin Exp Allergy. 2007 Jul;37(7):973-88 [PMID: 17581191]
  67. Hum Genomics. 2020 Oct 2;14(1):35 [PMID: 33008459]
  68. Front Genet. 2019 Mar 26;10:214 [PMID: 30972100]
  69. Commun Biol. 2020 Sep 10;3(1):502 [PMID: 32913254]
  70. IEEE Trans Biomed Eng. 2017 Feb;64(2):263-273 [PMID: 27740470]
  71. J Transl Med. 2019 Oct 7;17(1):337 [PMID: 31590671]
  72. Bioinformatics. 2019 Jul 15;35(14):i501-i509 [PMID: 31510700]
  73. BMC Med Genomics. 2019 Dec 23;12(Suppl 10):189 [PMID: 31865908]
  74. Front Genet. 2019 Mar 08;10:166 [PMID: 30906311]
  75. IEEE/ACM Trans Comput Biol Bioinform. 2017 Nov-Dec;14(6):1350-1358 [PMID: 27429442]
  76. Comput Biol Chem. 2020 May 12;87:107277 [PMID: 32512487]
  77. Front Genet. 2017 Jun 16;8:84 [PMID: 28670325]
  78. J Thorac Dis. 2015 May;7(5):953-60 [PMID: 26101654]
  79. Annu Int Conf IEEE Eng Med Biol Soc. 2013;2013:1490-3 [PMID: 24109981]
  80. Bioinformatics. 2019 Sep 15;35(18):3348-3356 [PMID: 30698637]
  81. BMC Bioinformatics. 2014;15 Suppl 6:I1 [PMID: 25078282]
  82. Cancers (Basel). 2020 Mar 05;12(3): [PMID: 32150991]
  83. Genome Res. 2016 Jul;26(7):990-9 [PMID: 27197224]
  84. Front Psychiatry. 2020 Jul 17;11:673 [PMID: 32765316]
  85. NPJ Genom Med. 2020 Mar 10;5:11 [PMID: 32194984]
  86. Am J Pathol. 2017 Oct;187(10):2152-2162 [PMID: 28733194]
  87. Bioinformatics. 2020 Aug 1;36(15):4248-4254 [PMID: 32407457]
  88. Mol Syst Biol. 2018 Jun 20;14(6):e8124 [PMID: 29925568]
  89. Genome Med. 2021 Jul 14;13(1):112 [PMID: 34261540]
  90. Pac Symp Biocomput. 2020;25:355-366 [PMID: 31797610]
  91. Biomed Res Int. 2015;2015:783592 [PMID: 26075260]
  92. PLoS Comput Biol. 2018 Apr 10;14(4):e1006076 [PMID: 29634719]

Grants

  1. R01 HL132344/NHLBI NIH HHS

MeSH Term

Algorithms
Deep Learning
Genomics
High-Throughput Nucleotide Sequencing

Word Cloud

Created with Highcharts 10.0.0multi-omicsdatadeeplearningDLintegrationbiomedicalresearchmolecularanalysispredictionroadmapusingHigh-throughputnext-generationsequencingnowmakespossiblegeneratevastamountvariousapplicationsrevolutionizedprovidingcomprehensiveunderstandingbiologicalsystemsmechanismsdiseasedevelopmentRecentlyalgorithmsbecomeonepromisingmethodsduepredictiveperformancecapabilitycapturingnonlinearhierarchicalfeaturesintegratingtranslatingusefulfunctionalinsightsremainbiggestbottleneckcleartrendtowardsincorporatinghelpexplaincomplexrelationshipslayersMulti-omicsroleimprovepreventionearlydetectionmonitorprogressioninterpretpatternsendotypingdesignpersonalizedtreatmentsreviewoutlineofferpracticalperspectiveadvantageschallengesbarriersimplementationharmonizationimputationmissingvalueprecisionmedicinerisk

Similar Articles

Cited By (93)