Emergent dual scaling of riverine biodiversity.

Akira Terui, Seoghyun Kim, Christine L Dolph, Taku Kadoya, Yusuke Miyazaki
Author Information
  1. Akira Terui: Department of Biology, University of North Carolina at Greensboro, Greensboro, NC 27412; hanabi0111@gmail.com. ORCID
  2. Seoghyun Kim: Department of Biology, University of North Carolina at Greensboro, Greensboro, NC 27412. ORCID
  3. Christine L Dolph: Department of Ecology, Evolution and Behavior, University of Minnesota, St. Paul, MN 55108. ORCID
  4. Taku Kadoya: Biodiversity Division, National Institute for Environmental Studies, Tsukuba 305-8506, Japan.
  5. Yusuke Miyazaki: Department of Child Education and Welfare, Shiraume Gakuen College, Tokyo 187-8570, Japan.

Abstract

A prevailing paradigm suggests that species richness increases with area in a decelerating way. This ubiquitous power law scaling, the species-area relationship, has formed the foundation of many conservation strategies. In spatially complex ecosystems, however, the area may not be the sole dimension to scale biodiversity patterns because the scale-invariant complexity of fractal ecosystem structure may drive ecological dynamics in space. Here, we use theory and analysis of extensive fish community data from two distinct geographic regions to show that riverine biodiversity follows a robust scaling law along the two orthogonal dimensions of ecosystem size and complexity (i.e., the dual scaling law). In river networks, the recurrent merging of various tributaries forms fractal branching systems, where the prevalence of branching (ecosystem complexity) represents a macroscale control of the ecosystem's habitat heterogeneity. In the meantime, ecosystem size dictates metacommunity size and total habitat diversity, two factors regulating biodiversity in nature. Our theory predicted that, regardless of simulated species' traits, larger and more branched "complex" networks support greater species richness due to increased space and environmental heterogeneity. The relationships were linear on logarithmic axes, indicating power law scaling by ecosystem size and complexity. In support of this theoretical prediction, the power laws have consistently emerged in riverine fish communities across the study regions (Hokkaido Island in Japan and the midwestern United States) despite hosting different fauna with distinct evolutionary histories. The emergence of dual scaling law may be a pervasive property of branching networks with important implications for biodiversity conservation.

Keywords

References

  1. Proc Natl Acad Sci U S A. 2014 May 13;111(19):7030-5 [PMID: 24753575]
  2. Ecol Lett. 2014 Mar;17(3):273-83 [PMID: 24304967]
  3. Ecol Lett. 2013 May;16(5):707-19 [PMID: 23458322]
  4. Biol Rev Camb Philos Soc. 2019 Jun;94(3):849-873 [PMID: 30467930]
  5. Proc Natl Acad Sci U S A. 2007 Apr 3;104(14):5732-7 [PMID: 17360379]
  6. Glob Chang Biol. 2015 Aug;21(8):2905-16 [PMID: 25857843]
  7. Science. 2010 Nov 12;330(6006):965-7 [PMID: 20947729]
  8. Ecol Lett. 2007 Feb;10(2):165-75 [PMID: 17257104]
  9. Ecol Evol. 2020 Jun 30;10(14):7537-7550 [PMID: 32760547]
  10. Proc Natl Acad Sci U S A. 2010 Apr 13;107(15):6936-40 [PMID: 20351269]
  11. Nature. 2018 Feb 15;554(7692):360-363 [PMID: 29414940]
  12. Adv Water Resour. 2018 Feb;112:27-58 [PMID: 29651194]
  13. Ecol Lett. 2018 Feb;21(2):296-308 [PMID: 29282860]
  14. Proc Natl Acad Sci U S A. 2018 Jun 26;115(26):E5963-E5969 [PMID: 29895695]
  15. Ecol Lett. 2020 Sep;23(9):1314-1329 [PMID: 32672410]
  16. Nature. 2019 May;569(7755):215-221 [PMID: 31068722]
  17. Nature. 2020 Dec;588(7839):631-635 [PMID: 33239780]
  18. Proc Natl Acad Sci U S A. 2021 Nov 23;118(47): [PMID: 34795054]
  19. Ecol Lett. 2008 Jan;11(1):52-62 [PMID: 18021244]
  20. Science. 2010 Jun 11;328(5984):1388-91 [PMID: 20508088]
  21. Ecology. 2015 Feb;96(2):340-7 [PMID: 26240855]
  22. Proc Natl Acad Sci U S A. 2012 Apr 10;109(15):5761-6 [PMID: 22460788]
  23. Proc Natl Acad Sci U S A. 2016 Apr 19;113(16):4374-9 [PMID: 27044091]
  24. Proc Natl Acad Sci U S A. 2019 Jul 2;116(27):13434-13439 [PMID: 31209040]
  25. J Anim Ecol. 2010 May;79(3):571-80 [PMID: 20180874]
  26. J Theor Biol. 2019 Feb 7;462:418-424 [PMID: 30496747]
  27. Nature. 2000 Feb 24;403(6772):853-8 [PMID: 10706275]
  28. Ecol Lett. 2018 Sep;21(9):1330-1340 [PMID: 29952127]
  29. Nature. 2008 May 8;453(7192):220-2 [PMID: 18464742]
  30. Psychon Bull Rev. 2007 Oct;14(5):779-804 [PMID: 18087943]

MeSH Term

Animals
Biodiversity
Ecosystem
Fishes
Fractals
Geographic Mapping
Japan
Midwestern United States
Models, Biological
Rivers
Species Specificity

Word Cloud

Created with Highcharts 10.0.0scalinglawbiodiversityecosystemcomplexitysizespeciespowermaytheorytworiverinedualnetworksbranchingrichnessareaconservationfractalspacefishdistinctregionshabitatheterogeneitymetacommunitydiversitysupportprevailingparadigmsuggestsincreasesdeceleratingwayubiquitousspecies-arearelationshipformedfoundationmanystrategiesspatiallycomplexecosystemshoweversoledimensionscalepatternsscale-invariantstructuredriveecologicaldynamicsuseanalysisextensivecommunitydatageographicshowfollowsrobustalongorthogonaldimensionsieriverrecurrentmergingvarioustributariesformssystemsprevalencerepresentsmacroscalecontrolecosystem'smeantimedictatestotalfactorsregulatingnaturepredictedregardlesssimulatedspecies'traitslargerbranched"complex"greaterdueincreasedenvironmentalrelationshipslinearlogarithmicaxesindicatingtheoreticalpredictionlawsconsistentlyemergedcommunitiesacrossstudyHokkaidoIslandJapanmidwesternUnitedStatesdespitehostingdifferentfaunaevolutionaryhistoriesemergencepervasivepropertyimportantimplicationsEmergentfreshwaternetwork

Similar Articles

Cited By