Inflammasome-Dependent Peroxiredoxin 2 Secretion Induces the Classical Complement Pathway Activation.

Cheol Ho Park, Hyun Sook Lee, Man Sup Kwak, Jeon-Soo Shin
Author Information
  1. Cheol Ho Park: Department of Microbiology, Yonsei University College of Medicine, Seoul 03722, Korea. ORCID
  2. Hyun Sook Lee: Department of Microbiology, Yonsei University College of Medicine, Seoul 03722, Korea. ORCID
  3. Man Sup Kwak: Department of Microbiology, Yonsei University College of Medicine, Seoul 03722, Korea. ORCID
  4. Jeon-Soo Shin: Department of Microbiology, Yonsei University College of Medicine, Seoul 03722, Korea. ORCID

Abstract

Peroxiredoxins (Prxs) are ubiquitously expressed peroxidases that reduce hydrogen peroxide or alkyl peroxide production in cells. Prxs are released from cells in response to various stress conditions, and they function as damage-associated molecular pattern molecules. However, the secretory mechanism of Prxs and their roles have not been elucidated. Thus, we aimed to determine whether inflammasome activation is a secretory mechanism of Prxs and subsequently identify the effect of the secreted Prxs on activation of the classical complement pathway. Using J774A.1, a murine macrophage cell line, we demonstrated that NLRP3 inflammasome activation induces Prx1, Prx2, Prx5, and Prx6 secretion in a caspase-1 dependent manner. Using HEK293T cells with a transfection system, we revealed that the release of Prx1 and Prx2 relies on gasdermin-D (GSDMD)-mediated secretion. Next, we confirmed the binding of both Prx1 and Prx2 to C1q; however, only Prx2 could induce the C1q-mediated classical complement pathway activation. Collectively, our results suggest that inflammasome activation is a secretory mechanism of Prxs and that GSDMD is a mediator of their secretion. Moreover, secreted Prx1 and Prx2 bind with C1q, but only Prx2 mediates the classical complement pathway activation.

Keywords

References

  1. Cell. 2010 Mar 19;140(6):821-32 [PMID: 20303873]
  2. J Mol Biol. 2018 Sep 14;430(18 Pt B):3068-3080 [PMID: 29990470]
  3. Nature. 2016 Jul 06;535(7610):153-8 [PMID: 27383986]
  4. J Immunol. 2008 Feb 15;180(4):2329-38 [PMID: 18250442]
  5. N Engl J Med. 2001 Apr 5;344(14):1058-66 [PMID: 11287977]
  6. Cell Res. 2015 Dec;25(12):1285-98 [PMID: 26611636]
  7. Nat Med. 2015 Jul;21(7):677-87 [PMID: 26121197]
  8. Nature. 2002 Dec 19-26;420(6917):860-7 [PMID: 12490959]
  9. Autoimmun Rev. 2009 Jul;8(8):697-701 [PMID: 19393193]
  10. Nature. 2015 Oct 29;526(7575):660-5 [PMID: 26375003]
  11. Nature. 2016 Jul 7;535(7610):111-6 [PMID: 27281216]
  12. Front Immunol. 2021 May 13;12:652782 [PMID: 34054813]
  13. J Immunol. 1974 Jun;112(6):2135-47 [PMID: 4151108]
  14. Mol Immunol. 2004 Jul;41(6-7):583-97 [PMID: 15219997]
  15. Redox Biol. 2020 Jan;28:101315 [PMID: 31505325]
  16. Nature. 2006 Dec 14;444(7121):860-7 [PMID: 17167474]
  17. Nat Med. 2012 Jun;18(6):911-7 [PMID: 22610280]
  18. Nat Immunol. 2008 Aug;9(8):847-56 [PMID: 18604214]
  19. Free Radic Biol Med. 2019 Jun;137:24-36 [PMID: 30991142]
  20. Adv Exp Med Biol. 2009;653:117-28 [PMID: 19799115]
  21. Blood. 2003 Jun 15;101(12):5033-8 [PMID: 12586629]
  22. Nat Med. 2011 Nov 06;17(12):1674-9 [PMID: 22057346]
  23. Proc Natl Acad Sci U S A. 2014 Aug 19;111(33):12157-62 [PMID: 25097261]
  24. Trends Immunol. 2004 Oct;25(10):551-61 [PMID: 15364058]
  25. N Engl J Med. 2001 Apr 12;344(15):1140-4 [PMID: 11297706]
  26. Autophagy. 2018;14(1):120-133 [PMID: 28605287]
  27. Front Immunol. 2018 Apr 11;9:705 [PMID: 29696019]
  28. Immune Netw. 2018 Aug 13;18(4):e27 [PMID: 30181915]
  29. Immune Netw. 2019 Dec 23;19(6):e40 [PMID: 31921470]
  30. Immune Netw. 2016 Dec;16(6):373-380 [PMID: 28035213]
  31. Nat Rev Cardiol. 2017 Mar;14(3):133-144 [PMID: 27905474]
  32. Int Arch Allergy Appl Immunol. 1987;82(3-4):317-20 [PMID: 3494679]
  33. Biochem J. 1989 Nov 15;264(1):1-14 [PMID: 2690818]
  34. Nature. 2015 Oct 29;526(7575):666-71 [PMID: 26375259]
  35. Biochem J. 2009 Dec 23;425(2):313-25 [PMID: 20025614]
  36. Circulation. 2004 Apr 20;109(15):1870-6 [PMID: 15037531]
  37. Exp Mol Med. 2020 Sep;52(9):1587-1601 [PMID: 32929220]
  38. Nature. 2003 Jul 31;424(6948):561-5 [PMID: 12891360]
  39. Kidney Int. 1987 May;31(5):1126-31 [PMID: 3474470]
  40. Antioxid Redox Signal. 2013 Dec 10;19(17):1983-98 [PMID: 23477499]
  41. Neuron. 2002 Aug 1;35(3):419-32 [PMID: 12165466]

Word Cloud

Created with Highcharts 10.0.0PrxsactivationPrx2complementpathwayPrx1cellssecretorymechanisminflammasomeclassicalsecretionperoxidesecretedUsingGSDMDC1qPeroxiredoxin2ClassicalPeroxiredoxinsubiquitouslyexpressedperoxidasesreducehydrogenalkylproductionreleasedresponsevariousstressconditionsfunctiondamage-associatedmolecularpatternmoleculesHoweverroleselucidatedThusaimeddeterminewhethersubsequentlyidentifyeffectJ774A1murinemacrophagecelllinedemonstratedNLRP3inducesPrx5Prx6caspase-1dependentmannerHEK293Ttransfectionsystemrevealedreleasereliesgasdermin-D-mediatedNextconfirmedbindinghoweverinduceC1q-mediatedCollectivelyresultssuggestmediatorMoreoverbindmediatesInflammasome-DependentSecretionInducesComplementPathwayActivationGasderminDInflammasome

Similar Articles

Cited By