Cryo-EM reveals mechanistic insights into lipid-facilitated polyamine export by human ATP13A2.

Atsuhiro Tomita, Takashi Daiho, Tsukasa Kusakizako, Keitaro Yamashita, Satoshi Ogasawara, Takeshi Murata, Tomohiro Nishizawa, Osamu Nureki
Author Information
  1. Atsuhiro Tomita: Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
  2. Takashi Daiho: Department of Biochemistry, Asahikawa Medical University, Midorigaoka-Higashi, Asahikawa 078-8510, Japan.
  3. Tsukasa Kusakizako: Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
  4. Keitaro Yamashita: MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK.
  5. Satoshi Ogasawara: Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan.
  6. Takeshi Murata: Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan.
  7. Tomohiro Nishizawa: Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; Graduate School of Medical Life Science, Yokohama City University, 1-7-29, Tsurumi, Yokohama 230-0045, Japan. Electronic address: t-2438@yokohama-cu.ac.jp.
  8. Osamu Nureki: Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan. Electronic address: nureki@bs.s.u-tokyo.ac.jp.

Abstract

The cytoplasmic polyamine maintains cellular homeostasis by chelating toxic metal cations, regulating transcriptional activity, and protecting DNA. ATP13A2 was identified as a lysosomal polyamine exporter responsible for polyamine release into the cytosol, and its dysfunction is associated with Alzheimer's disease and other neural degradation diseases. ATP13A2 belongs to the P5 subfamily of the P-type ATPase family, but its mechanisms remain unknown. Here, we report the cryoelectron microscopy (cryo-EM) structures of human ATP13A2 under four different conditions, revealing the structural coupling between the polyamine binding and the dephosphorylation. Polyamine is bound at the luminal tunnel and recognized through numerous electrostatic and π-cation interactions, explaining its broad specificity. The unique N-terminal domain is anchored to the lipid membrane to stabilize the E2P conformation, thereby accelerating the E1P-to-E2P transition. These findings reveal the distinct mechanism of P5B ATPases, thereby paving the way for neuroprotective therapy by activating ATP13A2.

Keywords

References

  1. Acta Crystallogr D Biol Crystallogr. 2012 Apr;68(Pt 4):404-17 [PMID: 22505260]
  2. J Mol Biol. 1993 Dec 5;234(3):779-815 [PMID: 8254673]
  3. J Struct Biol. 2015 Nov;192(2):216-21 [PMID: 26278980]
  4. Cell Rep. 2020 Sep 29;32(13):108208 [PMID: 32997992]
  5. Nature. 2019 Jul;571(7765):366-370 [PMID: 31243363]
  6. Nucleic Acids Res. 1990 Mar 11;18(5):1271-82 [PMID: 2320418]
  7. Nat Struct Mol Biol. 2010 Jan;17(1):133-8 [PMID: 20010839]
  8. Nature. 2020 Feb;578(7795):419-424 [PMID: 31996848]
  9. Exp Cell Res. 1991 Aug;195(2):323-9 [PMID: 1649056]
  10. Bioinformatics. 2010 Aug 15;26(16):1958-64 [PMID: 20576627]
  11. Nat Mach Intell. 2021 Jul;3:601-609 [PMID: 34368623]
  12. Acta Crystallogr D Struct Biol. 2021 Oct 1;77(Pt 10):1282-1291 [PMID: 34605431]
  13. Proc Natl Acad Sci U S A. 1998 Sep 15;95(19):11140-5 [PMID: 9736703]
  14. Proc Natl Acad Sci U S A. 1992 Dec 1;89(23):11428-30 [PMID: 1454831]
  15. Aging (Albany NY). 2011 Aug;3(8):716-32 [PMID: 21869457]
  16. J Mol Graph. 1996 Feb;14(1):33-8, 27-8 [PMID: 8744570]
  17. Front Mol Neurosci. 2014 May 27;7:48 [PMID: 24904274]
  18. Acta Crystallogr D Biol Crystallogr. 2010 Jan;66(Pt 1):12-21 [PMID: 20057044]
  19. Nucleic Acids Res. 2005 Jul 1;33(Web Server issue):W244-8 [PMID: 15980461]
  20. PLoS One. 2018 Mar 1;13(3):e0193595 [PMID: 29494707]
  21. Nature. 2004 Nov 18;432(7015):361-8 [PMID: 15448704]
  22. Science. 2020 Sep 25;369(6511): [PMID: 32973005]
  23. J Comput Chem. 2005 Dec;26(16):1781-802 [PMID: 16222654]
  24. Nat Genet. 2006 Oct;38(10):1184-91 [PMID: 16964263]
  25. IUCrJ. 2019 Jan 01;6(Pt 1):5-17 [PMID: 30713699]
  26. Proc Natl Acad Sci U S A. 1992 Dec 1;89(23):11426-7 [PMID: 1454830]
  27. Science. 2019 Sep 13;365(6458):1149-1155 [PMID: 31416931]
  28. Acta Crystallogr D Struct Biol. 2018 Jun 1;74(Pt 6):531-544 [PMID: 29872004]
  29. J Mol Biol. 2003 Oct 31;333(4):721-45 [PMID: 14568533]
  30. Commun Biol. 2021 Jul 15;4(1):874 [PMID: 34267316]
  31. J Comput Chem. 2008 Aug;29(11):1859-65 [PMID: 18351591]
  32. Nature. 2000 Jun 8;405(6787):647-55 [PMID: 10864315]
  33. Science. 2004 Dec 24;306(5705):2251-5 [PMID: 15618517]
  34. Nat Commun. 2017 Nov 2;8(1):1257 [PMID: 29097652]
  35. Nat Commun. 2021 Jun 25;12(1):3973 [PMID: 34172751]
  36. Biochem J. 1989 Jun 15;260(3):697-704 [PMID: 2504149]
  37. Science. 2013 Oct 4;342(6154):123-7 [PMID: 24051246]
  38. Nature. 2013 Oct 10;502(7470):201-6 [PMID: 24089211]
  39. Annu Rev Biophys. 2011;40:243-66 [PMID: 21351879]
  40. Biophys J. 2015 Oct 20;109(8):1528-32 [PMID: 26488642]
  41. J Biol Chem. 2020 Jul 24;295(30):10180-10194 [PMID: 32493773]
  42. Structure. 2015 Jul 7;23(7):1350-61 [PMID: 26073602]
  43. Acta Crystallogr D Biol Crystallogr. 2010 Apr;66(Pt 4):486-501 [PMID: 20383002]
  44. Nature. 2007 Dec 13;450(7172):1111-4 [PMID: 18075595]
  45. Biochim Biophys Acta. 2016 Aug;1861(8 Pt B):767-783 [PMID: 26747647]
  46. Biochim Biophys Acta. 2009 Jun;1793(6):941-6 [PMID: 19010358]
  47. Science. 2004 Jun 11;304(5677):1672-5 [PMID: 15192230]
  48. J Struct Biol. 2005 Oct;152(1):36-51 [PMID: 16182563]
  49. Nature. 2018 Apr;556(7700):214-218 [PMID: 29618813]
  50. Nature. 2007 Dec 13;450(7172):1036-42 [PMID: 18075584]
  51. Elife. 2020 Dec 15;9: [PMID: 33320091]
  52. Elife. 2018 Nov 09;7: [PMID: 30412051]
  53. Annu Rev Biochem. 1967;36:727-56 [PMID: 18257736]
  54. Annu Rev Biochem. 1984;53:749-90 [PMID: 6206782]
  55. J Phys Chem B. 2010 Jun 17;114(23):7830-43 [PMID: 20496934]
  56. Proc Natl Acad Sci U S A. 2007 Dec 11;104(50):19831-6 [PMID: 18077416]
  57. Proc Natl Acad Sci U S A. 2012 Jun 12;109(24):9611-6 [PMID: 22647602]
  58. J Chem Theory Comput. 2012 Sep 11;8(9):3257-3273 [PMID: 23341755]
  59. Proc Natl Acad Sci U S A. 2015 Jul 21;112(29):9040-5 [PMID: 26134396]
  60. Nature. 2009 May 21;459(7245):446-50 [PMID: 19458722]
  61. Nature. 2011 Jun 29;475(7354):59-64 [PMID: 21716286]
  62. Acta Crystallogr D Struct Biol. 2018 Jun 1;74(Pt 6):492-505 [PMID: 29872001]
  63. J Comput Chem. 2017 Jun 5;38(21):1879-1886 [PMID: 28497616]
  64. Protein Sci. 2018 Jan;27(1):14-25 [PMID: 28710774]
  65. J Gen Physiol. 1969 Jul 1;54(1):306-26 [PMID: 19873651]
  66. BMC Struct Biol. 2008 Nov 14;8:49 [PMID: 19014592]
  67. Nucleic Acids Res. 2014 Jul;42(Web Server issue):W320-4 [PMID: 24753421]
  68. Annu Rev Pharmacol Toxicol. 1995;35:55-91 [PMID: 7598507]
  69. J Biol Chem. 2001 Aug 31;276(35):32771-8 [PMID: 11438520]

Grants

  1. MC_UP_A025_1012/Medical Research Council

MeSH Term

Adenosine Triphosphatases
Binding Sites
Cryoelectron Microscopy
Cytosol
HEK293 Cells
Homeostasis
Humans
Lipids
Membrane Lipids
Micelles
Molecular Conformation
Phosphorylation
Polyamines
Protein Conformation
Proton-Translocating ATPases

Chemicals

ATP13A2 protein, human
Lipids
Membrane Lipids
Micelles
Polyamines
Adenosine Triphosphatases
Proton-Translocating ATPases

Word Cloud

Created with Highcharts 10.0.0polyamineATP13A2diseaseP-typeATPasecryo-EMhumanmembranetherebycytoplasmicmaintainscellularhomeostasischelatingtoxicmetalcationsregulatingtranscriptionalactivityprotectingDNAidentifiedlysosomalexporterresponsiblereleasecytosoldysfunctionassociatedAlzheimer'sneuraldegradationdiseasesbelongsP5subfamilyfamilymechanismsremainunknownreportcryoelectronmicroscopystructuresfourdifferentconditionsrevealingstructuralcouplingbindingdephosphorylationPolyamineboundluminaltunnelrecognizednumerouselectrostaticπ-cationinteractionsexplainingbroadspecificityuniqueN-terminaldomainanchoredlipidstabilizeE2PconformationacceleratingE1P-to-E2PtransitionfindingsrevealdistinctmechanismP5BATPasespavingwayneuroprotectivetherapyactivatingCryo-EMrevealsmechanisticinsightslipid-facilitatedexportMDsimulationP5B-ATPasePARK9Parkinson'slysosomeprotein

Similar Articles

Cited By