Global sensitivity analysis in epidemiological modeling.

Xuefei Lu, Emanuele Borgonovo
Author Information
  1. Xuefei Lu: SKEMA Business School, Université Côte d'Azur, 5 Quai Marcel Dassault, Paris 92150, France.
  2. Emanuele Borgonovo: Department of Decision Sciences, Bocconi University, Via Röntgen 1, Milan 20136, Italy.

Abstract

Operations researchers worldwide rely extensively on quantitative simulations to model alternative aspects of the COVID-19 pandemic. Proper uncertainty quantification and sensitivity analysis are fundamental to enrich the modeling process and communicate correctly informed insights to decision-makers. We develop a methodology to obtain insights on key uncertainty drivers, trend analysis and interaction quantification through an innovative combination of probabilistic sensitivity techniques and machine learning tools. We illustrate the approach by applying it to a representative of the family of susceptible-infectious-recovered (SIR) models recently used in the context of the COVID-19 pandemic. We focus on data of the early pandemic progression in Italy and the United States (the U.S.). We perform the analysis for both cases of correlated and uncorrelated inputs. Results show that quarantine rate and intervention time are the key uncertainty drivers, have opposite effects on the number of total infected individuals and are involved in the most relevant interactions.

Keywords

References

  1. R Soc Open Sci. 2018 Jan 17;5(1):171435 [PMID: 29410846]
  2. Nature. 2021 Jan;589(7840):82-87 [PMID: 33171481]
  3. J Med Virol. 2020 Jun;92(6):645-659 [PMID: 32141624]
  4. Lancet. 2020 Feb 29;395(10225):689-697 [PMID: 32014114]
  5. Lancet Infect Dis. 2020 May;20(5):533-534 [PMID: 32087114]
  6. Lancet Infect Dis. 2020 May;20(5):553-558 [PMID: 32171059]
  7. Nature. 2020 Jun;582(7813):482-484 [PMID: 32581374]
  8. Nat Hum Behav. 2020 Jul;4(7):746-755 [PMID: 32572175]
  9. Proc Natl Acad Sci U S A. 2002 Aug 6;99(16):10935-40 [PMID: 12118122]
  10. Risk Anal. 2016 Oct;36(10):1871-1895 [PMID: 26857789]
  11. Proc Biol Sci. 1997 Aug 22;264(1385):1149-56 [PMID: 9308191]
  12. Math Biosci. 2003 Sep;185(1):33-72 [PMID: 12900141]
  13. Cell Discov. 2020 Feb 24;6:10 [PMID: 32133152]
  14. Science. 2003 Jun 20;300(5627):1966-70 [PMID: 12766207]
  15. Science. 2020 May 8;368(6491): [PMID: 32234805]
  16. Bull Math Biol. 1991;53(1-2):33-55 [PMID: 2059741]
  17. Proc Natl Acad Sci U S A. 2019 Oct 29;116(44):22071-22080 [PMID: 31619572]
  18. Math Biosci. 2008 Oct;215(2):144-51 [PMID: 18700149]
  19. Science. 2003 Jun 20;300(5627):1884-5 [PMID: 12766208]
  20. PLoS Curr. 2016 Nov 3;8: [PMID: 27974995]
  21. Int J Infect Dis. 2020 Apr;93:211-216 [PMID: 32145465]
  22. Science. 2020 Jul 10;369(6500): [PMID: 32414780]
  23. Bull Math Biol. 1991;53(1-2):89-118 [PMID: 2059743]
  24. Risk Anal. 2019 Jan;39(1):225-243 [PMID: 30144107]
  25. Proc Natl Acad Sci U S A. 2020 Jul 21;117(29):16732-16738 [PMID: 32616574]
  26. Bull Math Biol. 1991;53(1-2):57-87 [PMID: 2059742]
  27. PLoS One. 2012;7(10):e45414 [PMID: 23144693]
  28. J Clin Med. 2020 Feb 07;9(2): [PMID: 32046137]
  29. Sci Rep. 2020 Dec 9;10(1):21522 [PMID: 33298986]

Word Cloud

Created with Highcharts 10.0.0analysispandemicsensitivityCOVID-19uncertaintyquantificationmodelinginsightskeydriversSIRmodelsGlobalOperationsresearchersworldwiderelyextensivelyquantitativesimulationsmodelalternativeaspectsProperfundamentalenrichprocesscommunicatecorrectlyinformeddecision-makersdevelopmethodologyobtaintrendinteractioninnovativecombinationprobabilistictechniquesmachinelearningtoolsillustrateapproachapplyingrepresentativefamilysusceptible-infectious-recoveredrecentlyusedcontextfocusdataearlyprogressionItalyUnitedStatesUSperformcasescorrelateduncorrelatedinputsResultsshowquarantinerateinterventiontimeoppositeeffectsnumbertotalinfectedindividualsinvolvedrelevantinteractionsepidemiologicalAnalyticsORpandemics

Similar Articles

Cited By