Phylogenetic Analysis and Genome-Wide Association Study Applied to an Italian Outbreak.

Alexandra Chiaverini, Fabrizia Guidi, Marina Torresi, Vicdalia Aniela Acciari, Gabriella Centorotola, Alessandra Cornacchia, Patrizia Centorame, Cristina Marfoglia, Giuliana Blasi, Marco Di Domenico, Giacomo Migliorati, Sophie Roussel, Francesco Pomilio, Yann Sevellec
Author Information
  1. Alexandra Chiaverini: National Reference Laboratory for Listeria monocytogenes, Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise G. Caporale, Teramo, Italy.
  2. Fabrizia Guidi: Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche "Togo Rosati", Perugia, Italy.
  3. Marina Torresi: National Reference Laboratory for Listeria monocytogenes, Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise G. Caporale, Teramo, Italy.
  4. Vicdalia Aniela Acciari: National Reference Laboratory for Listeria monocytogenes, Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise G. Caporale, Teramo, Italy.
  5. Gabriella Centorotola: National Reference Laboratory for Listeria monocytogenes, Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise G. Caporale, Teramo, Italy.
  6. Alessandra Cornacchia: National Reference Laboratory for Listeria monocytogenes, Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise G. Caporale, Teramo, Italy.
  7. Patrizia Centorame: National Reference Laboratory for Listeria monocytogenes, Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise G. Caporale, Teramo, Italy.
  8. Cristina Marfoglia: National Reference Laboratory for Listeria monocytogenes, Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise G. Caporale, Teramo, Italy.
  9. Giuliana Blasi: Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche "Togo Rosati", Perugia, Italy.
  10. Marco Di Domenico: National Reference Centre for Whole Genome Sequencing of Microbial Pathogens Database and Bioinformatic Analysis, Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise G. Caporale, Teramo, Italy.
  11. Giacomo Migliorati: National Reference Laboratory for Listeria monocytogenes, Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise G. Caporale, Teramo, Italy.
  12. Sophie Roussel: Laboratoire de Sécurité des Aliments, Agence Nationale de Sécurité Sanitaire de l'Alimentation, de l'Environnement et du Travail, Université PARIS-EST, Maisons-Alfort, France.
  13. Francesco Pomilio: National Reference Laboratory for Listeria monocytogenes, Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise G. Caporale, Teramo, Italy.
  14. Yann Sevellec: Laboratoire de Sécurité des Aliments, Agence Nationale de Sécurité Sanitaire de l'Alimentation, de l'Environnement et du Travail, Université PARIS-EST, Maisons-Alfort, France.

Abstract

From May 2015 to March 2016, a severe outbreak due to ST7 strain occurred in Central Italy and caused 24 confirmed clinical cases. The epidemic strain was deeply investigated using whole-genome sequencing (WGS) analysis. In the interested area, the foodborne outbreak investigation identified a meat food-producing plant contaminated by the outbreak strain, carried by pork-ready-to-eat products. In the same region, in March 2018, the epidemic strain reemerged causing one listeriosis case in a 10-month-old child. The aim of this study was to investigate the phylogeny of the epidemic and reemergent strains over time and to compare them with a closer ST7 clone, detected during the outbreak and with different pulsed-field gel electrophoresis (PFGE) profiles, in order to identify genomic features linked to the persistence and the reemergence of the outbreak. An approach combining phylogenetic analysis and genome-wide association study (GWAS) revealed that the epidemic and reemergent clones were genetically closer to the ST7 clone with different PFGE profiles and strictly associated with the pork production chain. The repeated detection of both clones was probably correlated with (i) the presence of truly persistent clones and the repeated introduction of new ones and (ii) the contribution of prophage genes in promoting the persistence of the epidemic clones. Despite that no significant genomic differences were detected between the outbreak and the reemergent strain, the two related clones detected during the outbreak can be differentiated by transcriptional factor and phage genes associated with the phage LP-114.

Keywords

References

  1. One Health Outlook. 2020;2(1):20 [PMID: 33103064]
  2. Bioinformatics. 2018 Jan 15;34(2):292-293 [PMID: 29028899]
  3. Nat Microbiol. 2016 Oct 10;2:16185 [PMID: 27723724]
  4. Foodborne Pathog Dis. 2012 Aug;9(8):767-72 [PMID: 22870986]
  5. Foodborne Pathog Dis. 2021 Aug;18(8):574-581 [PMID: 32955931]
  6. mSphere. 2019 Aug 7;4(4): [PMID: 31391275]
  7. Infect Genet Evol. 2019 Sep;73:214-220 [PMID: 31039448]
  8. Front Public Health. 2019 Jun 04;7:139 [PMID: 31214559]
  9. RNA. 2017 Mar;23(3):346-354 [PMID: 27932585]
  10. Bioinformatics. 2013 Apr 15;29(8):1072-5 [PMID: 23422339]
  11. Front Microbiol. 2018 Mar 14;9:446 [PMID: 29593690]
  12. F1000Res. 2018 Aug 24;7:1338 [PMID: 30254741]
  13. Appl Environ Microbiol. 2017 Oct 17;83(21): [PMID: 28842547]
  14. FEMS Microbiol Rev. 2005 Apr;29(2):231-62 [PMID: 15808743]
  15. Appl Environ Microbiol. 2014 Aug;80(15):4616-25 [PMID: 24837381]
  16. BMC Genomics. 2008 Nov 13;9:539 [PMID: 19014550]
  17. Genome Res. 2018 Sep;28(9):1395-1404 [PMID: 30049790]
  18. Microbiol Resour Announc. 2018 Dec 13;7(23): [PMID: 30574578]
  19. iScience. 2020 Jan 24;23(1):100805 [PMID: 31926432]
  20. Food Res Int. 2020 Jun;132:109063 [PMID: 32331684]
  21. EFSA J. 2019 Dec 03;17(12):e05898 [PMID: 32626197]
  22. Front Microbiol. 2019 Sep 04;10:2070 [PMID: 31551995]
  23. Med Clin (Barc). 2020 Jun 12;154(11):453-458 [PMID: 32147188]
  24. Sci Rep. 2021 Apr 27;11(1):9066 [PMID: 33907261]
  25. Front Cell Infect Microbiol. 2019 Jan 10;8:452 [PMID: 30687648]
  26. Front Microbiol. 2019 Nov 21;10:2698 [PMID: 31824466]
  27. Microorganisms. 2021 Feb 13;9(2): [PMID: 33668440]
  28. Genome Announc. 2018 Jun 14;6(24): [PMID: 29903806]
  29. J Appl Microbiol. 2021 Nov;131(5):2082-2094 [PMID: 33768629]
  30. Appl Environ Microbiol. 2015 Sep 1;81(17):6024-37 [PMID: 26116683]
  31. Vet Rec. 2020 Nov 28;187(11):e101 [PMID: 33024008]
  32. Int J Food Microbiol. 2019 Feb 16;291:181-188 [PMID: 30530095]
  33. Bioinformatics. 2018 Dec 15;34(24):4310-4312 [PMID: 30535304]
  34. Bioinformatics. 2014 Aug 1;30(15):2114-20 [PMID: 24695404]
  35. FEMS Microbiol Rev. 2003 Jun;27(2-3):145-63 [PMID: 12829265]
  36. Foodborne Pathog Dis. 2009 Jan-Feb;6(1):39-48 [PMID: 18991548]
  37. BMC Genomics. 2020 Feb 6;21(1):130 [PMID: 32028892]
  38. Foods. 2020 Jan 08;9(1): [PMID: 31936251]
  39. BMC Genomics. 2018 Sep 25;19(1):708 [PMID: 30253738]
  40. J Med Microbiol. 2018 Sep;67(9):1351-1360 [PMID: 30024370]
  41. Microb Genom. 2018 Mar;4(3): [PMID: 29543149]
  42. EFSA J. 2021 Feb 27;19(2):e06406 [PMID: 33680134]
  43. J Bacteriol. 2001 Feb;183(4):1133-9 [PMID: 11157924]
  44. Nat Genet. 2016 Mar;48(3):308-313 [PMID: 26829754]
  45. J Comput Biol. 2012 May;19(5):455-77 [PMID: 22506599]
  46. Antimicrob Agents Chemother. 2014 Jul;58(7):3895-903 [PMID: 24777092]
  47. Genome Biol. 2020 Jul 22;21(1):180 [PMID: 32698896]
  48. Environ Microbiol Rep. 2017 Aug;9(4):428-440 [PMID: 28574206]
  49. Nat Commun. 2019 Jun 6;10(1):2488 [PMID: 31171794]
  50. Pathogens. 2020 Sep 28;9(10): [PMID: 32998344]
  51. Front Public Health. 2020 Sep 18;8:519293 [PMID: 33072691]
  52. Bioinformatics. 2014 Jul 15;30(14):2068-9 [PMID: 24642063]
  53. Emerg Infect Dis. 2020 Jul;26(7):1456-1464 [PMID: 32568037]

Word Cloud

Created with Highcharts 10.0.0outbreakstrainepidemicclonesST7reemergentdetectedMarchWGSanalysisstudycloserclonedifferentPFGEprofilesgenomicpersistenceGWASassociatedrepeatedgenesphageMay20152016severedueoccurredCentralItalycaused24confirmedclinicalcasesdeeplyinvestigatedusingwhole-genomesequencinginterestedareafoodborneinvestigationidentifiedmeatfood-producingplantcontaminatedcarriedpork-ready-to-eatproductsregion2018reemergedcausingonelisteriosiscase10-month-oldchildaiminvestigatephylogenystrainstimecomparepulsed-fieldgelelectrophoresisorderidentifyfeatureslinkedreemergenceapproachcombiningphylogeneticgenome-wideassociationrevealedgeneticallystrictlyporkproductionchaindetectionprobablycorrelatedpresencetrulypersistentintroductionnewonesiicontributionprophagepromotingDespitesignificantdifferencestworelatedcandifferentiatedtranscriptionalfactorLP-114PhylogeneticAnalysisGenome-WideAssociationStudyAppliedItalianOutbreakListeriamonocytogenes

Similar Articles

Cited By