Cellulase production and efficient saccharification of biomass by a new mutant Trichoderma afroharzianum MEA-12.

Zhi-Qing Peng, Chuang Li, Yi Lin, Sheng-Shan Wu, Li-Hui Gan, Jian Liu, Shu-Liang Yang, Xian-Hai Zeng, Lu Lin
Author Information
  1. Zhi-Qing Peng: College of Energy, Xiamen University, Xiamen, 361102, China.
  2. Chuang Li: College of Energy, Xiamen University, Xiamen, 361102, China.
  3. Yi Lin: College of Energy, Xiamen University, Xiamen, 361102, China.
  4. Sheng-Shan Wu: College of Energy, Xiamen University, Xiamen, 361102, China.
  5. Li-Hui Gan: College of Energy, Xiamen University, Xiamen, 361102, China.
  6. Jian Liu: College of Energy, Xiamen University, Xiamen, 361102, China.
  7. Shu-Liang Yang: College of Energy, Xiamen University, Xiamen, 361102, China.
  8. Xian-Hai Zeng: College of Energy, Xiamen University, Xiamen, 361102, China. xianhai.zeng@xmu.edu.cn. ORCID
  9. Lu Lin: College of Energy, Xiamen University, Xiamen, 361102, China.

Abstract

BACKGROUND: Cellulase plays a key role in converting cellulosic biomass into fermentable sugar to produce chemicals and fuels, which is generally produced by filamentous fungi. However, most of the filamentous fungi obtained by natural breeding have low secretory capacity in cellulase production, which are far from meeting the requirements of industrial production. Random mutagenesis combined with adaptive laboratory evolution (ALE) strategy is an effective method to increase the production of fungal enzymes.
RESULTS: This study obtained a mutant of Trichoderma afroharzianum by exposures to N-methyl-N'-nitro-N-nitrosoguanidine (MNNG), Ethyl Methanesulfonate (EMS), Atmospheric and Room Temperature Plasma (ARTP) and ALE with high sugar stress. The T. afroharzianum mutant MEA-12 produced 0.60, 5.47, 0.31 and 2.17 IU/mL FPase, CMCase, pNPCase and pNPGase, respectively. These levels were 4.33, 6.37, 4.92 and 4.15 times higher than those of the parental strain, respectively. Also, it was found that T. afroharzianum had the same carbon catabolite repression (CCR) effect as other Trichoderma in liquid submerged fermentation. In contrast, the mutant MEA-12 can tolerate the inhibition of glucose (up to 20 mM) without affecting enzyme production under inducing conditions. Interestingly, crude enzyme from MEA-12 showed high enzymatic hydrolysis efficiency against three different biomasses (cornstalk, bamboo and reed), when combined with cellulase from T. reesei Rut-C30. In addition, the factors that improved cellulase production by MEA-12 were clarified.
CONCLUSIONS: Overall, compound mutagenesis combined with ALE effectively increased the production of fungal cellulase. A super-producing mutant MEA-12 was obtained, and its cellulase could hydrolyze common biomasses efficiently, in combination with enzymes derived from model strain T. reesei, which provides a new choice for processing of bioresources in the future.

Keywords

References

  1. Biotechnol Bioeng Symp. 1976;(6):21-33 [PMID: 1000065]
  2. Biotechnol Biofuels. 2020 Apr 24;13:79 [PMID: 32346395]
  3. Appl Microbiol Biotechnol. 2021 Apr;105(8):3019-3025 [PMID: 33825000]
  4. Biotechnol Adv. 2019 Jul - Aug;37(4):519-529 [PMID: 30576717]
  5. Microorganisms. 2020 Sep 23;8(10): [PMID: 32977378]
  6. Bioresour Technol. 2019 Nov;292:122063 [PMID: 31473036]
  7. Biotechnol Biofuels. 2019 Nov 2;12:258 [PMID: 31700541]
  8. Proc Natl Acad Sci U S A. 2016 Jul 5;113(27):7503-8 [PMID: 27325754]
  9. Bioresour Technol. 2021 Jun;329:124898 [PMID: 33691204]
  10. Biotechnol Adv. 2019 Nov 1;37(6):107361 [PMID: 30825514]
  11. J Biol Chem. 2019 Nov 29;294(48):18435-18450 [PMID: 31501242]
  12. Appl Microbiol Biotechnol. 2020 Feb;104(4):1517-1531 [PMID: 31919586]
  13. Sci Adv. 2018 Mar 23;4(3):e1701475 [PMID: 29740597]
  14. Biotechnol Biofuels. 2018 Sep 24;11:261 [PMID: 30258495]
  15. Appl Microbiol Biotechnol. 2014 Jun;98(12):5387-96 [PMID: 24769904]
  16. Adv Synth Catal. 2019 Jun 6;361(11):2387-2401 [PMID: 31244574]
  17. ChemSusChem. 2017 Oct 23;10(20):3982-3993 [PMID: 28691765]
  18. Chem Rev. 2015 Feb 11;115(3):1308-448 [PMID: 25629559]
  19. Biotechnol Adv. 2017 Dec;35(8):1049-1059 [PMID: 28579363]
  20. Bioresour Technol. 2009 Feb;100(4):1659-62 [PMID: 18951016]
  21. J Biosci Bioeng. 2020 Feb;129(2):242-249 [PMID: 31561850]
  22. Bioresour Technol. 2021 Sep 30;:126056 [PMID: 34601027]
  23. Biotechnol Appl Biochem. 2015 Mar-Apr;62(2):287-92 [PMID: 24980609]
  24. Biotechnol Biofuels. 2021 Mar 26;14(1):77 [PMID: 33771193]
  25. Crit Rev Biotechnol. 2010 Dec;30(4):302-9 [PMID: 20868219]
  26. Biotechnol Bioeng. 1985 Sep;27(9):1367-73 [PMID: 18553827]
  27. Biotechnol Bioeng. 2020 Jun;117(6):1747-1760 [PMID: 32124970]
  28. Front Microbiol. 2020 Jul 14;11:1617 [PMID: 32760377]
  29. Eur J Biochem. 1974 Jul 15;46(2):295-305 [PMID: 4854948]
  30. Bioresour Technol. 2020 Jan;296:122355 [PMID: 31711906]
  31. 3 Biotech. 2018 Jul;8(7):302 [PMID: 30002992]
  32. Biotechnol Biofuels. 2017 Jun 19;10:156 [PMID: 28649275]
  33. Trends Biotechnol. 2021 May 3;: [PMID: 33958227]

Grants

  1. 21978248/National Natural Science Foundation of China
  2. 21676223/National Natural Science Foundation of China
  3. 2019J06005/Natural Science Foundation of Fujian Province

Word Cloud

Created with Highcharts 10.0.0productionMEA-12cellulasemutantafroharzianumTrichodermaTCellulaseobtainedmutagenesiscombinedALE4biomasssugarproducedfilamentousfungilaboratoryevolutionfungalenzymeshigh0respectivelystrainenzymebiomassesreeseinewBACKGROUND:playskeyroleconvertingcellulosicfermentableproducechemicalsfuelsgenerallyHowevernaturalbreedinglowsecretorycapacityfarmeetingrequirementsindustrialRandomadaptivestrategyeffectivemethodincreaseRESULTS:studyexposuresN-methyl-N'-nitro-N-nitrosoguanidineMNNGEthylMethanesulfonateEMSAtmosphericRoomTemperaturePlasmaARTPstress6054731217 IU/mLFPaseCMCasepNPCasepNPGaselevels336379215timeshigherparentalAlsofoundcarboncataboliterepressionCCReffectliquidsubmergedfermentationcontrastcantolerateinhibitionglucose20 mMwithoutaffectinginducingconditionsInterestinglycrudeshowedenzymatichydrolysisefficiencythreedifferentcornstalkbambooreedRut-C30additionfactorsimprovedclarifiedCONCLUSIONS:Overallcompoundeffectivelyincreasedsuper-producinghydrolyzecommonefficientlycombinationderivedmodelprovideschoiceprocessingbioresourcesfutureefficientsaccharificationAdaptiveBiomassCompound

Similar Articles

Cited By