High-resolution structures of the actomyosin-V complex in three nucleotide states provide insights into the force generation mechanism.

Sabrina Pospich, H Lee Sweeney, Anne Houdusse, Stefan Raunser
Author Information
  1. Sabrina Pospich: Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Dortmund, Germany. ORCID
  2. H Lee Sweeney: Department of Pharmacology and Therapeutics and the Myology Institute, University of Florida, Gainesville, United States. ORCID
  3. Anne Houdusse: Structural Motility, Institut Curie, Centre National de la Recherche Scientifique, Paris, France. ORCID
  4. Stefan Raunser: Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Dortmund, Germany. ORCID

Abstract

The molecular motor myosin undergoes a series of major structural transitions during its force-producing motor cycle. The underlying mechanism and its coupling to ATP hydrolysis and actin binding are only partially understood, mostly due to sparse structural data on actin-bound states of myosin. Here, we report 26 high-resolution cryo-EM structures of the actomyosin-V complex in the strong-ADP, rigor, and a previously unseen post-rigor transition state that binds the ATP analog AppNHp. The structures reveal a high flexibility of myosin in each state and provide valuable insights into the structural transitions of myosin-V upon ADP release and binding of AppNHp, as well as the actomyosin interface. In addition, they show how myosin is able to specifically alter the structure of F-actin.

Keywords

References

  1. Methods. 2011 Sep;55(1):94-106 [PMID: 21821126]
  2. Acta Crystallogr D Biol Crystallogr. 2010 Jan;66(Pt 1):12-21 [PMID: 20057044]
  3. Biophys J. 2020 Aug 18;119(4):821-830 [PMID: 32730789]
  4. J Cell Sci. 2007 May 15;120(Pt 10):1779-90 [PMID: 17456547]
  5. Nucleic Acids Res. 2009 Jan;37(Database issue):D355-9 [PMID: 18996896]
  6. Biochemistry. 1996 Apr 30;35(17):5404-17 [PMID: 8611530]
  7. Biochemistry. 1971 Dec 7;10(25):4617-24 [PMID: 4258719]
  8. Biochemistry. 2002 Jul 2;41(26):8508-17 [PMID: 12081502]
  9. J Biol Chem. 2020 Oct 16;295(42):14522-14535 [PMID: 32817166]
  10. Cell Mol Life Sci. 2005 Jul;62(13):1462-77 [PMID: 15924264]
  11. J Struct Biol. 2007 Jan;157(1):38-46 [PMID: 16859925]
  12. Nature. 1990 Nov 29;348(6300):440-2 [PMID: 2123302]
  13. Nat Commun. 2020 Nov 11;11(1):5716 [PMID: 33177513]
  14. J Comput Chem. 2004 Oct;25(13):1605-12 [PMID: 15264254]
  15. EMBO J. 1982;1(8):945-51 [PMID: 6329717]
  16. Annu Rev Biophys. 2010;39:539-57 [PMID: 20192767]
  17. J Biol Chem. 2012 Jul 13;287(29):24339-45 [PMID: 22637580]
  18. J Struct Biol. 2016 Jan;193(1):1-12 [PMID: 26592709]
  19. Proc Natl Acad Sci U S A. 2008 Sep 2;105(35):12867-72 [PMID: 18725645]
  20. J Struct Biol. 2019 Jan 1;205(1):30-40 [PMID: 30502495]
  21. Curr Opin Cell Biol. 2004 Feb;16(1):61-7 [PMID: 15037306]
  22. Science. 1993 Jul 2;261(5117):50-8 [PMID: 8316857]
  23. Biophys J. 2008 Jul;95(1):247-56 [PMID: 18339764]
  24. Biochemistry. 1997 Sep 30;36(39):11619-28 [PMID: 9305951]
  25. Adv Exp Med Biol. 2020;1239:41-59 [PMID: 32451855]
  26. J Mol Biol. 2006 Mar 10;356(5):1107-17 [PMID: 16406406]
  27. J Cell Biol. 1996 Oct;135(2):291-302 [PMID: 8896589]
  28. Acta Crystallogr D Biol Crystallogr. 2009 Oct;65(Pt 10):1074-80 [PMID: 19770504]
  29. Nucleic Acids Res. 2019 Jan 8;47(D1):D464-D474 [PMID: 30357411]
  30. J Vis Exp. 2017 May 16;(123): [PMID: 28570515]
  31. Annu Rev Cell Dev Biol. 2011;27:133-55 [PMID: 21639800]
  32. Nature. 2000 Jun 15;405(6788):804-7 [PMID: 10866203]
  33. J Biol Chem. 2000 Dec 8;275(49):38494-9 [PMID: 10954715]
  34. Nat Methods. 2015 Oct;12(10):943-6 [PMID: 26280328]
  35. J Biol Chem. 2004 Sep 17;279(38):40100-11 [PMID: 15254035]
  36. Science. 2009 Aug 21;325(5943):960-3 [PMID: 19696342]
  37. J Biol Chem. 2001 Aug 24;276(34):32373-81 [PMID: 11423557]
  38. Curr Biol. 1997 Feb 1;7(2):R112-8 [PMID: 9081660]
  39. Physiology (Bethesda). 2005 Aug;20:239-51 [PMID: 16024512]
  40. Proc Natl Acad Sci U S A. 2017 Oct 3;114(40):10636-10641 [PMID: 28923924]
  41. Acta Crystallogr D Struct Biol. 2018 Jun 1;74(Pt 6):531-544 [PMID: 29872004]
  42. Proc Natl Acad Sci U S A. 2011 May 10;108(19):7793-8 [PMID: 21518908]
  43. Nature. 1953 Sep 19;172(4377):530-2 [PMID: 13099257]
  44. Biochemistry. 2001 Nov 20;40(46):13933-40 [PMID: 11705383]
  45. J Cell Sci. 2013 Jan 1;126(Pt 1):9-19 [PMID: 23487037]
  46. Nature. 2016 Jun 30;534(7609):724-8 [PMID: 27324845]
  47. Mol Cell. 2005 Sep 2;19(5):595-605 [PMID: 16137617]
  48. Bioinformatics. 2006 Nov 1;22(21):2695-6 [PMID: 16940322]
  49. Sci Am. 1958 Nov;199(5):67-72 passim [PMID: 13602816]
  50. Sci Adv. 2022 Jul 22;8(29):eabl4733 [PMID: 35857845]
  51. Proc Natl Acad Sci U S A. 2007 Jun 12;104(24):9994-9 [PMID: 17548820]
  52. Curr Opin Struct Biol. 2018 Oct;52:16-24 [PMID: 30056307]
  53. Nature. 1995 Dec 14;378(6558):748-51 [PMID: 7501026]
  54. Eur J Biochem. 1982 Nov 15;128(2-3):547-55 [PMID: 7151795]
  55. Curr Biol. 2015 Aug 3;25(15):2057-62 [PMID: 26190073]
  56. Adv Exp Med Biol. 2020;1239:245-316 [PMID: 32451863]
  57. Proc Natl Acad Sci U S A. 1999 Nov 23;96(24):13726-31 [PMID: 10570140]
  58. J Biol Chem. 2006 Mar 3;281(9):5711-7 [PMID: 16377637]
  59. Nat Methods. 2021 Feb;18(2):176-185 [PMID: 33542510]
  60. Nat Commun. 2017 Jan 09;8:13969 [PMID: 28067235]
  61. Biophys J. 1995 May;68(5):1991-2003 [PMID: 7612841]
  62. Structure. 2020 Apr 7;28(4):437-449.e5 [PMID: 32084355]
  63. Curr Protoc Cell Biol. 2005 Apr;Chapter 13:13.6.1-13.6.23 [PMID: 18228461]
  64. J Mol Biol. 2010 Mar 5;396(4):937-48 [PMID: 20036250]
  65. Eur J Biochem. 1981;114(1):33-8 [PMID: 7011802]
  66. Biochemistry. 1973 Sep 25;12(20):3927-32 [PMID: 4355544]
  67. J Struct Biol. 2017 Dec;200(3):325-333 [PMID: 29038012]
  68. Nature. 2003 Sep 25;425(6956):419-23 [PMID: 14508494]
  69. Nat Commun. 2021 Mar 25;12(1):1892 [PMID: 33767187]
  70. Chem Rev. 2020 Jan 8;120(1):5-35 [PMID: 31689091]
  71. Acta Crystallogr D Biol Crystallogr. 2010 Apr;66(Pt 4):486-501 [PMID: 20383002]
  72. J Gen Physiol. 2004 Jun;123(6):631-41 [PMID: 15173217]
  73. Nucleic Acids Res. 2011 Jan;39(Database issue):D456-64 [PMID: 20935055]
  74. J Mol Biol. 2010 Feb 26;396(3):501-9 [PMID: 19962990]
  75. Nat Struct Mol Biol. 2018 Jun;25(6):528-537 [PMID: 29867215]
  76. J Muscle Res Cell Motil. 2013 Aug;34(3-4):155-63 [PMID: 23666668]
  77. EMBO J. 2004 Nov 24;23(23):4527-37 [PMID: 15510214]
  78. Science. 1993 Jul 2;261(5117):58-65 [PMID: 8316858]
  79. Biochemistry. 2000 Nov 21;39(46):14196-202 [PMID: 11087368]
  80. Acta Crystallogr D Biol Crystallogr. 2012 Apr;68(Pt 4):425-30 [PMID: 22505262]
  81. Structure. 2021 Jan 7;29(1):50-60.e4 [PMID: 33065066]
  82. PLoS Pathog. 2022 Apr 4;18(4):e1010408 [PMID: 35377914]
  83. Structure. 1996 Aug 15;4(8):969-87 [PMID: 8805581]
  84. J Mol Biol. 2011 Nov 25;414(2):204-16 [PMID: 21986200]
  85. Proc Natl Acad Sci U S A. 2005 May 10;102(19):6873-8 [PMID: 15863618]
  86. Elife. 2018 Nov 09;7: [PMID: 30412051]
  87. Annu Rev Biophys. 2009;38:347-69 [PMID: 19416073]
  88. Proc Natl Acad Sci U S A. 2017 Jun 27;114(26):6782-6787 [PMID: 28607071]
  89. Biophys J. 2006 Feb 15;90(4):1295-307 [PMID: 16326899]
  90. Acta Crystallogr D Struct Biol. 2018 Jun 1;74(Pt 6):519-530 [PMID: 29872003]
  91. Adv Exp Med Biol. 2020;1239:7-19 [PMID: 32451853]
  92. J Mol Graph Model. 2002 Dec;21(3):181-3 [PMID: 12463636]
  93. Dev Cell. 2015 May 26;33(4):401-12 [PMID: 25936506]
  94. Nat Cell Biol. 2005 Sep;7(9):861-9 [PMID: 16100513]
  95. Nucleic Acids Res. 2012 Jul;40(Web Server issue):W537-41 [PMID: 22570416]
  96. Nature. 2003 Mar 27;422(6930):399-404 [PMID: 12660775]
  97. Proc Natl Acad Sci U S A. 2018 Feb 6;115(6):1292-1297 [PMID: 29358376]
  98. Commun Biol. 2019 Jun 19;2:218 [PMID: 31240256]
  99. J Exp Biol. 2016 Jan;219(Pt 2):168-74 [PMID: 26792327]
  100. Science. 2008 Jul 4;321(5885):133-6 [PMID: 18599791]
  101. Biochim Biophys Acta. 2000 Mar 17;1496(1):3-22 [PMID: 10722873]
  102. Nat Methods. 2017 Apr;14(4):331-332 [PMID: 28250466]
  103. Biochem Biophys Res Commun. 2002 Jan 11;290(1):311-7 [PMID: 11779171]
  104. Protein Sci. 2018 Jan;27(1):129-134 [PMID: 28875543]
  105. Semin Cell Dev Biol. 2020 Jun;102:51-64 [PMID: 31836290]
  106. Cell. 2012 Jul 20;150(2):327-38 [PMID: 22817895]
  107. Angew Chem Int Ed Engl. 2021 Apr 12;60(16):8678-8682 [PMID: 33449370]
  108. Trends Cell Biol. 2009 Jun;19(6):245-52 [PMID: 19406643]
  109. Biochemistry. 2006 Sep 26;45(38):11589-97 [PMID: 16981718]
  110. Acta Crystallogr D Struct Biol. 2020 Jul 1;76(Pt 7):613-620 [PMID: 32627734]
  111. Proc Natl Acad Sci U S A. 2016 Mar 29;113(13):E1844-52 [PMID: 26976594]
  112. Methods Cell Biol. 1982;24:271-89 [PMID: 7098993]
  113. EMBO J. 2002 Jun 3;21(11):2517-25 [PMID: 12032065]
  114. Structure. 2012 Feb 8;20(2):237-47 [PMID: 22325773]
  115. Nature. 1990 Nov 15;348(6298):217-21 [PMID: 2234090]
  116. Proc Natl Acad Sci U S A. 2011 Feb 1;108(5):1891-6 [PMID: 21245357]
  117. Nat Commun. 2020 Nov 19;11(1):5897 [PMID: 33214556]
  118. Protein Sci. 2018 Jan;27(1):14-25 [PMID: 28710774]
  119. Proc Natl Acad Sci U S A. 2018 Jun 12;115(24):6213-6218 [PMID: 29844196]
  120. Biochemistry. 2002 Jan 8;41(1):86-93 [PMID: 11772006]
  121. Elife. 2017 Dec 04;6: [PMID: 29199952]
  122. J Struct Biol. 2012 Dec;180(3):519-30 [PMID: 23000701]

Grants

  1. R01 DC009100/NIDCD NIH HHS

MeSH Term

Actins
Actomyosin
Animals
Biomechanical Phenomena
Chickens
Humans
Myosin Type V
Protein Binding
Rabbits

Chemicals

Actins
Actomyosin
Myosin Type V

Word Cloud

Created with Highcharts 10.0.0myosinstructuralstructuresAppNHpmolecularmotortransitionsmechanismATPactinbindingstatescryo-EMactomyosin-Vcomplexstateprovideinsightsactomyosinundergoesseriesmajorforce-producingcycleunderlyingcouplinghydrolysispartiallyunderstoodmostlyduesparsedataactin-boundreport26high-resolutionstrong-ADPrigorpreviouslyunseenpost-rigortransitionbindsanalogrevealhighflexibilityvaluablemyosin-VuponADPreleasewellinterfaceadditionshowablespecificallyalterstructureF-actinHigh-resolutionthreenucleotideforcegenerationchickencytoskeletonhumanbiophysicsrabbitbiology

Similar Articles

Cited By