Deciphering the major metabolic pathways associated with aluminum tolerance in popcorn roots using label-free quantitative proteomics.
Vitor Batista Pinto, Vinicius Costa Almeida, Ítalo A Pereira-Lima, Ellen Moura Vale, Wagner L Araújo, Vanildo Silveira, José Marcelo Soriano Viana
Author Information
Vitor Batista Pinto: Departamento de Biologia Geral, Universidade Federal de Viçosa (UFV), Viçosa, MG, 36570-900, Brazil. vitorbp@uenf.br. ORCID
Vinicius Costa Almeida: Departamento de Biologia Geral, Universidade Federal de Viçosa (UFV), Viçosa, MG, 36570-900, Brazil.
Ítalo A Pereira-Lima: Departamento de Biologia Vegetal, Universidade Federal de Viçosa (UFV), Viçosa, MG, 36570-900, Brazil.
Ellen Moura Vale: Laboratório de Biotecnologia, Centro de Biociências e Biotecnologia (CBB), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Av. Alberto Lamego, 2000, Campos dos Goytacazes, RJ, 28013-602, Brazil.
Wagner L Araújo: Departamento de Biologia Vegetal, Universidade Federal de Viçosa (UFV), Viçosa, MG, 36570-900, Brazil.
Vanildo Silveira: Laboratório de Biotecnologia, Centro de Biociências e Biotecnologia (CBB), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Av. Alberto Lamego, 2000, Campos dos Goytacazes, RJ, 28013-602, Brazil.
José Marcelo Soriano Viana: Departamento de Biologia Geral, Universidade Federal de Viçosa (UFV), Viçosa, MG, 36570-900, Brazil.
MAIN CONCLUSION: Al responsive proteins are associated with starch, sucrose, and other carbohydrate metabolic pathways. Sucrose synthase is a candidate to Al tolerance. Al responses are regulated at transcriptional and post-transcriptional levels. Aluminum toxicity is one of the important abiotic stresses that affects worldwide crop production. The soluble form of aluminum (Al) inhibits root growth by altering water and nutrient uptake, a process that also reduces plant growth and development. Under long-term Al exposure, plants can activate several tolerance mechanisms. To date, no reports of large-scale proteomic data concerning maize responses to this ion have been published. To investigate the post-transcriptional regulation in response to Al toxicity, we performed label-free quantitative proteomics for comparative analysis of two Al-contrasting popcorn inbred lines and an Al-tolerant commercial hybrid during 72 h under Al-stress conditions. A total of 489 differentially accumulated proteins (DAPs) were identified in the Al-sensitive inbred line, 491 in the Al-tolerant inbred line, and 277 in the commercial hybrid. Among them, 120 DAPs were co-expressed in both Al tolerant genotypes. Bioinformatics analysis indicated that starch, sucrose, and other components of carbohydrate metabolism and glycolysis/gluconeogenesis are the biochemical processes regulated in response to Al toxicity. Sucrose synthase accumulation and an increase in sucrose content and starch degradation suggest that these components may enhance popcorn tolerance to Al stress. The accumulation of citrate synthase suggests a key role for this enzyme in the detoxification process in the Al-tolerant inbred line. The integration of transcriptomic and proteomic data indicates that the Al tolerance response presents a complex regulatory network into the transcription and translation dynamics of popcorn root development.
Bouma TJ, Nielsen KL, Koutstaal B (2000) Sample preparation and scanning protocol for computerised analysis of root length and diameter. Plant Soil 218:185–196. https://doi.org/10.1023/a:1014905104017
[DOI: 10.1023/a]
Braun DM (2012) Sweet! The pathway is complete. Science (80-) 335:173–174. https://doi.org/10.1126/science.1216828
[DOI: 10.1126/science.1216828]
Cross JM, Von Korff M, Altmann T et al (2006) Variation of enzyme activities and metabolite levels in 24 Arabidopsis accessions growing in carbon-limited conditions. Plant Physiol 142:1574–1588. https://doi.org/10.1104/pp.106.086629
[DOI: 10.1104/pp.106.086629]
Damerval C, De Vienne D, Zivy M, Thiellement H (1986) Technical improvements in two-dimensional electrophoresis increase the level of genetic variation detected in wheat-seedling proteins. Electrophoresis 7:52–54. https://doi.org/10.1002/elps.1150070108
[DOI: 10.1002/elps.1150070108]
Delhaize E, Ryan PR (1995) Aluminum toxicity and tolerance in plants. Plant Physiol 107:315–321. https://doi.org/10.1104/pp.107.2.315
[DOI: 10.1104/pp.107.2.315]
Delhaize E, Ryan PR, Randall RJ (1993) Aluminum tolerance in wheat (Triticum aestivum L.). II.Aluminum-stimulated excretion of malic acid from root apices. Plant Physiol 103:695–702. https://doi.org/10.1104/pp.103.3.695
[DOI: 10.1104/pp.103.3.695]
Deutsch EW, Csordas A, Sun Z et al (2017) The ProteomeXchange consortium in 2017: supporting the cultural change in proteomics public data deposition. Nucleic Acids Res 45:D1100–D1106. https://doi.org/10.1093/nar/gkw936
[DOI: 10.1093/nar/gkw936]
Distler U, Kuharev J, Navarro P et al (2014) Drift time-specific collision energies enable deep-coverage data-independent acquisition proteomics. Nat Methods 11:167–170. https://doi.org/10.1038/nmeth.2767
[DOI: 10.1038/nmeth.2767]
Duressa D, Soliman K, Taylor R, Senwo Z (2011) Proteomic analysis of soybean roots under aluminum stress. Int J Plant Genomics 2011:1–12. https://doi.org/10.1155/2011/282531
[DOI: 10.1155/2011/282531]
Famoso AN, Clark RT, Shaff JE et al (2010) Development of a novel aluminum tolerance phenotyping platform used for comparisons of cereal aluminum tolerance and investigations into rice aluminum tolerance mechanisms. Plant Physiol 153:1678–1691. https://doi.org/10.1104/pp.110.156794
[DOI: 10.1104/pp.110.156794]
Fernie AR, Roessner U, Trethewey RN, Willmitzer L (2001) The contribution of plastidial phosphoglucomutase to the control of starch synthesis within the potato tuber. Planta 213:418–426. https://doi.org/10.1007/s004250100521
[DOI: 10.1007/s004250100521]
Furukawa J, Yamaji N, Wang H et al (2007) An aluminum-activated citrate transporter in barley. Plant Cell Physiol 48:1081–1091. https://doi.org/10.1093/pcp/pcm091
[DOI: 10.1093/pcp/pcm091]
González-Cruz J, Pastenes C (2012) Water-stress-induced thermotolerance of photosynthesis in bean (Phaseolus vulgaris L.) plants: The possible involvement of lipid composition and xanthophyll cycle pigments. Environ Exp Bot 77:127–140. https://doi.org/10.1016/j.envexpbot.2011.11.004
[DOI: 10.1016/j.envexpbot.2011.11.004]
Guimaraes CT, Simoes CC, Pastina MM et al (2014) Genetic dissection of Al tolerance QTLs in the maize genome by high density SNP scan. BMC Genomics 15:153. https://doi.org/10.1186/1471-2164-15-153
[DOI: 10.1186/1471-2164-15-153]
Guo P, Qi YP, Yang LT et al (2017) Root adaptive responses to aluminum-treatment revealed by RNA-seq in two citrus species with different aluminum-tolerance. Front Plant Sci 8:330. https://doi.org/10.3389/fpls.2017.00330
[DOI: 10.3389/fpls.2017.00330]
Gupta AK, Kaur N (2005) Sugar signalling and gene expression in relation to carbohydrate metabolism under abiotic stresses in plants. J Biosci 30:761–776. https://doi.org/10.1007/BF02703574
[DOI: 10.1007/BF02703574]
Haider S, Pal R (2013) Integrated analysis of transcriptomic and proteomic data. Curr Genomics 14:91–110. https://doi.org/10.2174/1389202911314020003
[DOI: 10.2174/1389202911314020003]
Hinkson IV, Elias JE (2011) The dynamic state of protein turnover: It’s about time. Trends Cell Biol 21:293–303. https://doi.org/10.1016/j.tcb.2011.02.002
[DOI: 10.1016/j.tcb.2011.02.002]
Hoekenga OA, Maron LG, Piñeros MA et al (2006) AtALMT1, which encodes a malate transporter, is identified as one of several genes critical for aluminum tolerance in Arabidopsis. Proc Natl Acad Sci USA 103:9738–9743. https://doi.org/10.1073/pnas.0602868103
[DOI: 10.1073/pnas.0602868103]
Huck MG (1972) Impairment of sucrose utilization for cell wall formation in the roots of aluminum-damaged cotton seedlings. Plant Cell Physiol 13:7–14. https://doi.org/10.1093/oxfordjournals.pcp.a074729
[DOI: 10.1093/oxfordjournals.pcp.a074729]
Jang MG, Kim YJ, Jang GH et al (2014) Ectopic overexpression of the aluminum-induced protein gene from Panax ginseng enhances heavy metal tolerance in transgenic Arabidopsis. Plant Cell Tissue Organ Cult 119:95–106. https://doi.org/10.1007/s11240-014-0516-2
[DOI: 10.1007/s11240-014-0516-2]
Jian LY, Shao JZ, Yun FH, Matsumoto H (2005) Aluminium resistance requires resistance to acid stress: a case study with spinach that exudes oxalate rapidly when exposed to Al stress. J Exp Bot 56:1197–1203. https://doi.org/10.1093/jxb/eri113
[DOI: 10.1093/jxb/eri113]
Kidd PS, Llugany M, Poschenrieder C et al (2001) The role of root exudates in aluminium resistance and silicon-induced amelioration of aluminium toxicity in three varieties of maize (Zea mays L.). J Exp Bot 52:1339–1352. https://doi.org/10.1093/jexbot/52.359.1339
[DOI: 10.1093/jexbot/52.359.1339]
Koch KE, Nolte KD, Duke ER et al (1992) Sugar levels modulate differential expression of maize sucrose synthase genes. Plant Cell 4:59–69. https://doi.org/10.1105/tpc.4.1.59
[DOI: 10.1105/tpc.4.1.59]
Kochian LV, Pence NS, Letham DLD et al (2002) Mechanisms of metal resistance in plants: aluminum and heavy metals. In: Horst WJ, Bürkert A, Claassen N et al (eds) Progress in plant nutrition: Plenary lectures of the XIV International Plant Nutrition Colloquium. Springer, Netherlands, pp 109–119
[DOI: 10.1007/978-94-017-2789-1_8]
Kochian LV, Hoekenga OA, Piñeros MA (2004) How do crop plants tolerate acid soils? Mechanisms of aluminum tolerance and phosphorous efficiency. Annu Rev Plant Biol 55:459–493. https://doi.org/10.1146/annurev.arplant.55.031903.141655
[DOI: 10.1146/annurev.arplant.55.031903.141655]
Kochian LV, Piñeros MA, Hoekenga OA (2005) The physiology, genetics and molecular biology of plant aluminum resistance and toxicity. Plant Soil 274:175–195. https://doi.org/10.1007/s11104-004-1158-7
[DOI: 10.1007/s11104-004-1158-7]
Kochian LV, Piñeros MA, Liu J, Magalhaes JV (2015) Plant adaptation to acid soils: The molecular basis for crop aluminum resistance. Annu Rev Plant Biol 66:571–598. https://doi.org/10.1146/annurev-arplant-043014-114822
[DOI: 10.1146/annurev-arplant-043014-114822]
Kumari M, Taylor GJ, Deyholos MK (2008) Transcriptomic responses to aluminum stress in roots of Arabidopsis thaliana. Mol Genet Genomics 279:339–357. https://doi.org/10.1007/s00438-007-0316-z
[DOI: 10.1007/s00438-007-0316-z]
Lane TS, Rempe CS, Davitt J et al (2016) Diversity of ABC transporter genes across the plant kingdom and their potential utility in biotechnology. BMC Biotechnol 16:47. https://doi.org/10.1186/s12896-016-0277-6
[DOI: 10.1186/s12896-016-0277-6]
Liu YJ, Wang GL, Ma J et al (2018) Transcript profiling of sucrose synthase genes involved in sucrose metabolism among four carrot (Daucus carota L.) cultivars reveals distinct patterns. BMC Plant Biol 18:8. https://doi.org/10.1186/s12870-017-1221-1
[DOI: 10.1186/s12870-017-1221-1]
Ma JF (2005) Physiological mechanisms of Al resistance in higher plants. Soil Sci Plant Nutr 51:609–612. https://doi.org/10.1111/j.1747-0765.2005.tb00074.x
[DOI: 10.1111/j.1747-0765.2005.tb00074.x]
Ma JF, Zheng SJ, Matsumoto H, Hiradate S (1997) Detoxifying aluminium with buckwheat. Nature 390:569–570. https://doi.org/10.1038/37518
[DOI: 10.1038/37518]
Ma JF, Ryan PR, Delhaize E (2001) Aluminium tolerance in plants and the complexing role of organic acids. Trends Plant Sci 6:273–278. https://doi.org/10.1016/S1360-1385(01)01961-6
[DOI: 10.1016/S1360-1385(01)01961-6]
Magalhaes JV, Liu J, Guimarães CT et al (2007) A gene in the multidrug and toxic compound extrusion (MATE) family confers aluminum tolerance in sorghum. Nat Genet 39:1156–1161. https://doi.org/10.1038/ng2074
[DOI: 10.1038/ng2074]
Magnavaca R, Gardner CO, Clark RB (1987) Inheritance of aluminum tolerance in maize. In: Gabelman WH, Loughman BC (eds) Genetic aspects of plant mineral nutrition. Springer, Netherlands, pp 201–212
[DOI: 10.1007/978-94-009-3581-5_18]
Malinova I, Kunz HH, Alseekh S et al (2014) Reduction of the cytosolic phosphoglucomutase in Arabidopsis reveals impact on plant growth, seed and root development, and carbohydrate partitioning. PLoS ONE 9:e112468. https://doi.org/10.1371/journal.pone.0112468
[DOI: 10.1371/journal.pone.0112468]
Maron LG, Piñeros MA, Guimarães CT et al (2010) Two functionally distinct members of the MATE (multi-drug and toxic compound extrusion) family of transporters potentially underlie two major aluminum tolerance QTLs in maize. Plant J 61:728–740. https://doi.org/10.1111/j.1365-313X.2009.04103.x
[DOI: 10.1111/j.1365-313X.2009.04103.x]
Maron LG, Guimarães CT, Kirst M et al (2013) Aluminum tolerance in maize is associated with higher MATE1 gene copy number. Proc Natl Acad Sci USA 110:5241–5246. https://doi.org/10.1073/pnas.1220766110
[DOI: 10.1073/pnas.1220766110]
Matonyei TK, Barros BA, Guimaraes RGN et al (2020) Aluminum tolerance mechanisms in Kenyan maize germplasm are independent from the citrate transporter ZmMATE1. Sci Rep 10:7320. https://doi.org/10.1038/s41598-020-64107-z
[DOI: 10.1038/s41598-020-64107-z]
Mattiello L, Kirst M, da Silva FR et al (2010) Transcriptional profile of maize roots under acid soil growth. BMC Plant Biol 10:196. https://doi.org/10.1186/1471-2229-10-196
[DOI: 10.1186/1471-2229-10-196]
Moterle LM, de Lucca e BA, Scapim CA et al (2012) Combining ability of popcorn lines for seed quality and agronomic traits. Euphytica 185:337–347. https://doi.org/10.1007/s10681-011-0458-2
[DOI: 10.1007/s10681-011-0458-2]
Nagao M, Minami A, Arakawa K et al (2005) Rapid degradation of starch in chloroplasts and concomitant accumulation of soluble sugars associated with ABA-induced freezing tolerance in the moss Physcomitrella patens. J Plant Physiol 162:169–180. https://doi.org/10.1016/j.jplph.2004.06.012
[DOI: 10.1016/j.jplph.2004.06.012]
Nanjo Y, Skultety L, Uváčková L et al (2012) Mass spectrometry-based analysis of proteomic changes in the root tips of flooded soybean seedlings. J Proteome Res 11:372–385. https://doi.org/10.1021/pr200701y
[DOI: 10.1021/pr200701y]
Nunes-Nesi A, Carrari F, Gibon Y et al (2007) Deficiency of mitochondrial fumarase activity in tomato plants impairs photosynthesis via an effect on stomatal function. Plant J 50:1093–1106. https://doi.org/10.1111/j.1365-313X.2007.03115.x
[DOI: 10.1111/j.1365-313X.2007.03115.x]
Oh MW, Roy SK, Kamal AHM et al (2014) Proteome analysis of roots of wheat seedlings under aluminum stress. Mol Biol Rep 41:671–681. https://doi.org/10.1007/s11033-013-2905-8
[DOI: 10.1007/s11033-013-2905-8]
Pellet DM, Grunes DL, Kochian LV (1995) Organic acid exudation as an aluminum-tolerance mechanism in maize (Zea mays L.). Planta 196:788–795. https://doi.org/10.1007/BF00197346
[DOI: 10.1007/BF00197346]
Perez-Riverol Y, Csordas A, Bai J et al (2019) The PRIDE database and related tools and resources in 2019: improving support for quantification data. Nucleic Acids Res 47:D442–D450. https://doi.org/10.1093/nar/gky1106
[DOI: 10.1093/nar/gky1106]
Piñeros MA, Magalhaes JV, Carvalho Alves VM, Kochian LV (2002) The physiology and biophysics of an aluminum tolerance mechanism based on root citrate exudation in maize. Plant Physiol 129:1194–1206. https://doi.org/10.1104/pp.002295
[DOI: 10.1104/pp.002295]
Pinto VB, Ferreira PG, Vidigal PMP et al (2021) Uncovering the transcriptional response of popcorn (Zea mays L. var. everta) under long-term aluminum toxicity. Sci Rep 11:19644. https://doi.org/10.1038/s41598-021-99097-z
[DOI: 10.1038/s41598-021-99097-z]
Rahim F, Almeida VC, Viana JMS et al (2019) Identification of contrasting tropical popcorn inbreds for studying aluminum toxicity tolerance inheritance. Euphytica 215:47. https://doi.org/10.1007/s10681-019-2372-y
[DOI: 10.1007/s10681-019-2372-y]
Ralhan R, DeSouza LV, Matta A et al (2008) Discovery and verification of head-and-neck cancer biomarkers by differential protein expression analysis using iTRAQ labeling, multidimensional liquid chromatography, and tandem mass spectrometry. Mol Cell Proteomics 7:1162–1173. https://doi.org/10.1074/mcp.M700500-MCP200
[DOI: 10.1074/mcp.M700500-MCP200]
Reis RS, Vale EM, Sousa KR et al (2021) Pretreatment free of 2,4-dichlorophenoxyacetic acid improves the differentiation of sugarcane somatic embryos by affecting the hormonal balance and the accumulation of reserves. Plant Cell Tissue Organ Cult 145:101–115. https://doi.org/10.1007/s11240-020-01995-z
[DOI: 10.1007/s11240-020-01995-z]
Roitsch T, Bittner M, Godt DE (1995) Induction of apoplastic invertase of Chenopodium rubrum by D-glucose and a glucose analog and tissue-specific expression suggest a role in sink-source regulation. Plant Physiol 108:285–294. https://doi.org/10.1104/pp.108.1.285
[DOI: 10.1104/pp.108.1.285]
Ryan PR, Raman H, Gupta S et al (2009) A second mechanism for aluminum resistance in wheat relies on the constitutive efflux of citrate from roots. Plant Physiol 149:340–351. https://doi.org/10.1104/pp.108.129155
[DOI: 10.1104/pp.108.129155]
Silva CO, Brito DS, da Silva AA et al (2020) Differential accumulation of aluminum in root tips of soybean seedlings. Rev Bras Bot 43:99–107. https://doi.org/10.1007/s40415-020-00593-9
[DOI: 10.1007/s40415-020-00593-9]
Stein O, Granot D (2019) An overview of sucrose synthases in plants. Front Plant Sci 10:95. https://doi.org/10.3389/fpls.2019.00095
[DOI: 10.3389/fpls.2019.00095]
Sun G, Zhu H, Wen S et al (2020) Citrate synthesis and exudation confer Al resistance in alfalfa (Medicago sativa L.). Plant Soil 449:319–329. https://doi.org/10.1007/s11104-020-04490-8
[DOI: 10.1007/s11104-020-04490-8]
Tovkach A, Ryan PR, Richardson AE et al (2013) Transposon-mediated alteration of TaMATE1B expression in wheat confers constitutive citrate efflux from root apices. Plant Physiol 161:880–892. https://doi.org/10.1104/pp.112.207142
[DOI: 10.1104/pp.112.207142]
Trouverie J, Thévenot C, Rocher J et al (2003) The role of abscisic acid in the response of a specific vacuolar invertase to water stress in the adult maize leaf. J Exp Bot 54:2177–2186. https://doi.org/10.1093/jxb/erg234
[DOI: 10.1093/jxb/erg234]
von Uexküll HR, Mutert E (1995) Global extent, development and economic impact of acid soils. Plant Soil 171:1–15. https://doi.org/10.1007/BF00009558
[DOI: 10.1007/BF00009558]
Wang ZQ, Xu XY, Gong QQ et al (2014) Root proteome of rice studied by iTRAQ provides integrated insight into aluminum stress tolerance mechanisms in plants. J Proteomics 98:189–205. https://doi.org/10.1016/j.jprot.2013.12.023
[DOI: 10.1016/j.jprot.2013.12.023]
Wu Y, Yang Z, How J et al (2017) Overexpression of a peroxidase gene (AtPrx64) of Arabidopsis thaliana in tobacco improves plant’s tolerance to aluminum stress. Plant Mol Biol 95:157–168. https://doi.org/10.1007/s11103-017-0644-2
[DOI: 10.1007/s11103-017-0644-2]
Yang Q, Wang Y, Zhang J et al (2007) Identification of aluminum-responsive proteins in rice roots by a proteomic approach: cysteine synthase as a key player in Al response. Proteomics 7:737–749. https://doi.org/10.1002/pmic.200600703
[DOI: 10.1002/pmic.200600703]
Yang JL, Zhu XF, Peng YX et al (2011) Aluminum regulates oxalate secretion and plasma membrane H+-ATPase activity independently in tomato roots. Planta 234:281–291. https://doi.org/10.1007/s00425-011-1402-3
[DOI: 10.1007/s00425-011-1402-3]
Yang L, Tian D, Todd CD et al (2013) Comparative proteome analyses reveal that nitric oxide is an important signal molecule in the response of rice to aluminum toxicity. J Proteome Res 12:1316–1330. https://doi.org/10.1021/pr300971n
[DOI: 10.1021/pr300971n]
Yang T-Y, Qi Y-P, Huang H-Y et al (2020) Interactive effects of pH and aluminum on the secretion of organic acid anions by roots and related metabolic factors in Citrus sinensis roots and leaves. Environ Pollut 262:114303. https://doi.org/10.1016/j.envpol.2020.114303
[DOI: 10.1016/j.envpol.2020.114303]
Yokosho K, Yamaji N, Ma JF (2011) An Al-inducible MATE gene is involved in external detoxification of Al in rice. Plant J 68:1061–1069. https://doi.org/10.1111/j.1365-313X.2011.04757.x
[DOI: 10.1111/j.1365-313X.2011.04757.x]
Zhen Y, Qi JL, Wang SS et al (2007) Comparative proteome analysis of differentially expressed proteins induced by Al toxicity in soybean. Physiol Plant 131:542–554. https://doi.org/10.1111/j.1399-3054.2007.00979.x
[DOI: 10.1111/j.1399-3054.2007.00979.x]
Zheng L, Lan P, Shen RF, Li WF (2014) Proteomics of aluminum tolerance in plants. Proteomics 14:566–578. https://doi.org/10.1002/pmic.201300252
[DOI: 10.1002/pmic.201300252]
Zhou Y, Zhou B, Pache L et al (2019) Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat Commun 10:1523. https://doi.org/10.1038/s41467-019-09234-6
[DOI: 10.1038/s41467-019-09234-6]