A Novel Method to Assess Motor Cortex Connectivity and Event Related Desynchronization Based on Mass Models.

Mauro Ursino, Giulia Ricci, Laura Astolfi, Floriana Pichiorri, Manuela Petti, Elisa Magosso
Author Information
  1. Mauro Ursino: Department of Electrical, Electronic and Information Engineering Guglielmo Marconi, Campus of Cesena, University of Bologna, Via Dell'Università 50, 47521 Cesena, Italy. ORCID
  2. Giulia Ricci: Department of Electrical, Electronic and Information Engineering Guglielmo Marconi, Campus of Cesena, University of Bologna, Via Dell'Università 50, 47521 Cesena, Italy. ORCID
  3. Laura Astolfi: Department of Computer, Control and Management Engineering, Sapienza University of Rome, Via Ariosto, 25, 00185 Roma, Italy.
  4. Floriana Pichiorri: Fondazione Santa Lucia, IRCCS Via Ardeatina 306/354, 00179 Roma, Italy.
  5. Manuela Petti: Department of Computer, Control and Management Engineering, Sapienza University of Rome, Via Ariosto, 25, 00185 Roma, Italy. ORCID
  6. Elisa Magosso: Department of Electrical, Electronic and Information Engineering Guglielmo Marconi, Campus of Cesena, University of Bologna, Via Dell'Università 50, 47521 Cesena, Italy. ORCID

Abstract

Knowledge of motor cortex connectivity is of great value in cognitive neuroscience, in order to provide a better understanding of motor organization and its alterations in pathological conditions. Traditional methods provide connectivity estimations which may vary depending on the task. This work aims to propose a new method for motor connectivity assessment based on the hypothesis of a task-independent connectivity network, assuming nonlinear behavior. The model considers six cortical regions of interest (ROIs) involved in hand movement. The dynamics of each region is simulated using a neural mass model, which reproduces the oscillatory activity through the interaction among four neural populations. Parameters of the model have been assigned to simulate both power spectral densities and coherences of a patient with left-hemisphere stroke during resting condition, movement of the affected, and movement of the unaffected hand. The presented model can simulate the three conditions using a single set of connectivity parameters, assuming that only inputs to the ROIs change from one condition to the other. The proposed procedure represents an innovative method to assess a brain circuit, which does not rely on a task-dependent connectivity network and allows brain rhythms and desynchronization to be assessed on a quantitative basis.

Keywords

References

  1. J Physiol. 1992;453:525-46 [PMID: 1464843]
  2. Stroke. 2012 Oct;43(10):2735-40 [PMID: 22895995]
  3. Neuroscience. 2018 May 15;378:54-70 [PMID: 27241945]
  4. Neuroimage Clin. 2015 Jun 28;8:572-82 [PMID: 26236627]
  5. Neuroimage. 2012 Jan 2;59(1):340-8 [PMID: 21835251]
  6. Neuroimage. 2007 Jun;36(2):332-45 [PMID: 17462916]
  7. Neuroimage. 2016 Jul 1;134:514-521 [PMID: 27090351]
  8. PLoS One. 2018 Jan 11;13(1):e0190715 [PMID: 29324886]
  9. Neuroimage. 2008 Jul 15;41(4):1382-94 [PMID: 18486490]
  10. Neuroimage. 2018 Nov 1;181:818-830 [PMID: 30130648]
  11. Suppl Clin Neurophysiol. 2003;56:63-72 [PMID: 14677383]
  12. Ann Neurol. 2009 Nov;66(5):604-16 [PMID: 19938103]
  13. J Neurophysiol. 2013 Sep;110(5):1158-66 [PMID: 23761697]
  14. Neuroimage. 2019 Oct 1;199:730-744 [PMID: 28219774]
  15. Neurorehabil Neural Repair. 2002 Sep;16(3):232-40 [PMID: 12234086]
  16. Neuroimage. 2008 Jul 15;41(4):1293-312 [PMID: 18485744]
  17. Cereb Cortex. 2011 Apr;21(4):756-68 [PMID: 20801897]
  18. Neuroimage Clin. 2018 Jun 09;19:883-891 [PMID: 29946512]
  19. Front Comput Neurosci. 2020 Jun 05;14:45 [PMID: 32581756]
  20. Brain. 2011 May;134(Pt 5):1264-76 [PMID: 21414995]
  21. Am Psychol. 1982 Apr;37(4):411-20 [PMID: 7103239]
  22. Prog Brain Res. 2006;159:211-22 [PMID: 17071233]
  23. Ann Neurol. 2015 May;77(5):851-65 [PMID: 25712802]
  24. J Neurophysiol. 2020 Feb 1;123(2):726-742 [PMID: 31774370]
  25. Rev Neurosci. 2019 Jul 26;30(6):605-623 [PMID: 30768425]
  26. Neuroimage. 2008 Aug 1;42(1):272-84 [PMID: 18515149]
  27. Phys Rev Lett. 2000 Jul 10;85(2):461-4 [PMID: 10991308]
  28. Neuroimage. 2014 Oct 1;99:451-60 [PMID: 24862079]
  29. J Theor Biol. 2006 Feb 21;238(4):901-13 [PMID: 16099472]
  30. Eur J Neurosci. 2018 Jan;47(2):158-163 [PMID: 29247485]
  31. Ann Neurol. 2008 Feb;63(2):236-46 [PMID: 17896791]
  32. Science. 2005 Apr 29;308(5722):702-4 [PMID: 15860630]
  33. Neuroimage. 2015 Apr 1;109:298-306 [PMID: 25613438]
  34. Brain Struct Funct. 2015 Mar;220(2):1093-107 [PMID: 24415059]
  35. Brain. 2004 Apr;127(Pt 4):747-58 [PMID: 14749291]
  36. J Comput Neurosci. 2017 Oct;43(2):143-158 [PMID: 28748303]
  37. PLoS One. 2009;4(4):e5307 [PMID: 19390578]
  38. Neuroimage. 2013 Nov 15;82:68-76 [PMID: 23747288]
  39. Electroencephalogr Clin Neurophysiol. 1977 Jun;42(6):817-26 [PMID: 67933]
  40. Eur J Neurosci. 2002 May;15(9):1499-508 [PMID: 12028360]
  41. Stroke. 1994 Nov;25(11):2215-9 [PMID: 7974548]
  42. J Neural Eng. 2014 Jun;11(3):035010 [PMID: 24835634]
  43. Brain Cogn. 2008 Jun;67(1):69-75 [PMID: 18206285]
  44. Neuroimage Clin. 2017 Jun 04;15:559-571 [PMID: 28652969]
  45. Hum Brain Mapp. 2018 Mar;39(3):1078-1092 [PMID: 29193484]
  46. Neuroimage. 2005 Jan 1;24(1):118-31 [PMID: 15588603]
  47. Int J Psychophysiol. 2001 Dec;43(1):41-58 [PMID: 11742684]
  48. Brain. 2006 Mar;129(Pt 3):791-808 [PMID: 16364955]
  49. Neuroimage. 2011 Apr 1;55(3):1147-58 [PMID: 21238594]
  50. BMC Neurosci. 2011 Nov 18;12:119 [PMID: 22098775]
  51. Brain Topogr. 2019 Jul;32(4):569-582 [PMID: 27718099]
  52. Neuroimage. 2011 Aug 1;57(3):1045-58 [PMID: 21600291]
  53. Brain. 2003 Nov;126(Pt 11):2476-96 [PMID: 12937084]
  54. Curr Opin Neurobiol. 2015 Jun;32:60-7 [PMID: 25528615]
  55. Acta Psychol (Amst). 1970;33:193-201 [PMID: 5445964]
  56. Neuroimage. 2010 Sep;52(3):1080-94 [PMID: 20045071]
  57. Biol Cybern. 2001 Jun;84(6):463-74 [PMID: 11417058]
  58. Anat Rec (Hoboken). 2009 Dec;292(12):2023-31 [PMID: 19943355]
  59. Hum Brain Mapp. 2007 Feb;28(2):143-57 [PMID: 16761264]
  60. Neuropsychol Rev. 2005 Jun;15(2):59-71 [PMID: 16211466]
  61. Neurology. 1991 Nov;41(11):1795-9 [PMID: 1944911]
  62. Proc Natl Acad Sci U S A. 2002 Oct 29;99(22):14518-23 [PMID: 12376621]
  63. Clin Neurophysiol. 2003 Oct;114(10):1819-26 [PMID: 14499743]
  64. Ann Neurol. 1992 May;31(5):463-72 [PMID: 1596081]
  65. Neuron. 2015 Oct 7;88(1):220-35 [PMID: 26447583]
  66. J Neurosci. 2010 Jun 23;30(25):8393-9 [PMID: 20573886]
  67. Front Comput Neurosci. 2017 Jun 30;11:57 [PMID: 28713259]
  68. Ann Neurol. 1991 Jan;29(1):63-71 [PMID: 1996881]
  69. J Exp Psychol Hum Percept Perform. 1989 Nov;15(4):711-22 [PMID: 2531206]

Word Cloud

Created with Highcharts 10.0.0connectivitymodelmotornetworkmovementbraincortexprovideconditionsmethodassumingROIshandusingneuralsimulatestrokeconditionrhythmsKnowledgegreatvaluecognitiveneuroscienceorderbetterunderstandingorganizationalterationspathologicalTraditionalmethodsestimationsmayvarydependingtaskworkaimsproposenewassessmentbasedhypothesistask-independentnonlinearbehaviorconsiderssixcorticalregionsinterestinvolveddynamicsregionsimulatedmassreproducesoscillatoryactivityinteractionamongfourpopulationsParametersassignedpowerspectraldensitiescoherencespatientleft-hemisphererestingaffectedunaffectedpresentedcanthreesinglesetparametersinputschangeoneproposedprocedurerepresentsinnovativeassesscircuitrelytask-dependentallowsdesynchronizationassessedquantitativebasisNovelMethodAssessMotorCortexConnectivityEventRelatedDesynchronizationBasedMassModelsEEGexcitatory/inhibitorysynapticconnectionsmodel–basednon–linearcoupling

Similar Articles

Cited By