Beyond Dyadic Coupling: The Method of Multivariate Surrogate Synchrony (mv-SUSY).

Deborah Meier, Wolfgang Tschacher
Author Information
  1. Deborah Meier: University Hospital of Psychiatry and Psychotherapy, University of Bern, 3000 Bern 60, Switzerland. ORCID
  2. Wolfgang Tschacher: University Hospital of Psychiatry and Psychotherapy, University of Bern, 3000 Bern 60, Switzerland.

Abstract

Measuring interpersonal synchrony is a promising approach to assess the complexity of social interaction, which however has been mostly limited to dyads. In this study, we introduce multivariate Surrogate Synchrony (mv-SUSY) to extend the current set of computational methods. Methods: mv-SUSY was applied to eight datasets consisting of 10 time series each, all with n = 9600 observations. Datasets 1 to 5 consist of simulated time series with the following characteristics: white noise (dataset 1), non-stationarity with linear time trends (dataset 2), autocorrelation (dataset 3), oscillation (dataset 4), and multivariate correlation (dataset 5). Datasets 6 to 8 comprise empirical multivariate movement data of two individuals (datasets 6 and 7) and between members of a group discussion (dataset 8.) Results: As hypothesized, findings of mv-SUSY revealed absence of synchrony in datasets 1 to 4 and presence of synchrony in dataset 5. In the empirical datasets, mv-SUSY indicated significant movement synchrony. These results were predominantly replicated by two well-established dyadic synchrony approaches, Surrogate Synchrony (SUSY) and Surrogate Concordance (SUCO). Conclusions: The study applied and evaluated a novel synchrony approach, mv-SUSY. We demonstrated the feasibility and validity of estimating multivariate nonverbal synchrony within and between individuals by mv-SUSY.

Keywords

References

  1. Front Physiol. 2012 Oct 19;3:405 [PMID: 23091463]
  2. Infant Behav Dev. 2011 Dec;34(4):569-77 [PMID: 21767879]
  3. Appl Psychophysiol Biofeedback. 2006 Jun;31(2):115-28 [PMID: 16724278]
  4. J Marital Fam Ther. 2016 Jul;42(3):383-95 [PMID: 26748869]
  5. Psychophysiology. 2021 Mar;58(3):e13739 [PMID: 33355941]
  6. Front Psychol. 2014 Jun 27;5:510 [PMID: 25018736]
  7. Front Hum Neurosci. 2015 May 05;9:179 [PMID: 25999831]
  8. Psychol Methods. 2018 Dec;23(4):757-773 [PMID: 29595296]
  9. Psychol Assess. 2020 May;32(5):415-430 [PMID: 32027163]
  10. Dis Nerv Syst. 1955 Jan;16(1):4-9 [PMID: 13231760]
  11. Psychol Methods. 2016 Sep;21(3):291-308 [PMID: 26867156]
  12. Sci Rep. 2019 Oct 11;9(1):14691 [PMID: 31604966]
  13. Psychol Sci. 2009 Jan;20(1):1-5 [PMID: 19152536]
  14. Annu Rev Psychol. 2013;64:285-308 [PMID: 23020640]
  15. J Exp Psychol Hum Percept Perform. 2014 Feb;40(1):145-58 [PMID: 23750969]
  16. BMC Neurosci. 2009 Mar 17;10:22 [PMID: 19292892]
  17. J Consult Clin Psychol. 2011 Jun;79(3):284-95 [PMID: 21639608]
  18. Front Psychol. 2014 Nov 24;5:1323 [PMID: 25505435]
  19. J Couns Psychol. 2020 Jul;67(4):536-549 [PMID: 32614233]
  20. Front Psychol. 2017 Nov 24;8:2053 [PMID: 29225589]
  21. Entropy (Basel). 2021 Jun 02;23(6): [PMID: 34199648]
  22. J Couns Psychol. 2020 Jul;67(4):420-437 [PMID: 32614224]
  23. J Pers Soc Psychol. 1999 Jun;76(6):893-910 [PMID: 10402679]
  24. Curr Biol. 2017 May 8;27(9):1375-1380 [PMID: 28457867]
  25. Fam Process. 2019 Sep;58(3):716-733 [PMID: 29888517]
  26. Pers Soc Psychol Rev. 2017 May;21(2):99-141 [PMID: 26921410]
  27. Sci Rep. 2020 May 5;10(1):7569 [PMID: 32371912]
  28. Nonlinear Dynamics Psychol Life Sci. 2021 Jul;25(3):309-333 [PMID: 34173733]
  29. Physiol Behav. 2016 Mar 15;156:24-34 [PMID: 26773466]
  30. Multivariate Behav Res. 2019 Mar-Apr;54(2):173-191 [PMID: 30569740]
  31. Psychother Res. 2020 Jun;30(5):558-573 [PMID: 31060474]
  32. PLoS One. 2019 Feb 11;14(2):e0211494 [PMID: 30742651]
  33. J Fam Psychol. 2013 Aug;27(4):579-88 [PMID: 23978320]
  34. J Couns Psychol. 2014 Jan;61(1):146-53 [PMID: 24274679]
  35. Nonlinear Dynamics Psychol Life Sci. 2020 Jan;24(1):79-104 [PMID: 31855552]
  36. Psychother Res. 2020 Jun;30(5):574-590 [PMID: 31213149]

Grants

  1. 93 261/Volkswagen Foundation

Word Cloud

Created with Highcharts 10.0.0synchronymv-SUSYdatasetmultivariateSurrogatedatasetsSynchronytime15movementapproachstudyappliedseriesDatasets468empiricaltwoindividualsMeasuringinterpersonalpromisingassesscomplexitysocialinteractionhowevermostlylimiteddyadsintroduceextendcurrentsetcomputationalmethodsMethods:eightconsisting10n=9600observationsconsistsimulatedfollowingcharacteristics:whitenoisenon-stationaritylineartrends2autocorrelation3oscillationcorrelationcomprisedata7membersgroupdiscussionResults:hypothesizedfindingsrevealedabsencepresenceindicatedsignificantresultspredominantlyreplicatedwell-establisheddyadicapproachesSUSYConcordanceSUCOConclusions:evaluatednoveldemonstratedfeasibilityvalidityestimatingnonverbalwithinBeyondDyadicCoupling:MethodMultivariateanalysissimulationsurrogate

Similar Articles

Cited By