Information Geometry, Fluctuations, Non-Equilibrium Thermodynamics, and Geodesics in Complex Systems.

Eun-Jin Kim
Author Information
  1. Eun-Jin Kim: Center for Fluid and Complex Systems, Coventry University, Priory St, Coventry CV1 5FB, UK. ORCID

Abstract

Information theory provides an interdisciplinary method to understand important phenomena in many research fields ranging from astrophysical and laboratory fluids/plasmas to biological systems. In particular, information geometric theory enables us to envision the evolution of non-equilibrium processes in terms of a (dimensionless) distance by quantifying how information unfolds over time as a probability density function (PDF) evolves in time. Here, we discuss some recent developments in information geometric theory focusing on time-dependent aspects of non-equilibrium processes (e.g., time-varying mean value, time-varying variance, or temperature, etc.) and their thermodynamic and physical/biological implications. We compare different distances between two given PDFs and highlight the importance of a path-dependent distance for a time-dependent PDF. We then discuss the role of the information rate Γ=dLdt and relative entropy in non-equilibrium thermodynamic relations (entropy production rate, heat flux, dissipated work, non-equilibrium free energy, etc.), and various inequalities among them. Here, L is the information length representing the total number of statistically distinguishable states a PDF evolves through over time. We explore the implications of a geodesic solution in information geometry for self-organization and control.

Keywords

References

  1. Phys Rev E. 2017 Feb;95(2-1):022137 [PMID: 28297923]
  2. Phys Rev E Stat Nonlin Soft Matter Phys. 2009 Jan;79(1 Pt 1):012104 [PMID: 19257090]
  3. Philos Trans A Math Phys Eng Sci. 2020 Feb 7;378(2164):20190159 [PMID: 31865883]
  4. Nat Rev Neurosci. 2010 Feb;11(2):127-38 [PMID: 20068583]
  5. Phys Rev Lett. 2000 Dec 4;85(23):4892-5 [PMID: 11102144]
  6. Entropy (Basel). 2019 Aug 08;21(8): [PMID: 33267488]
  7. Phys Rev E Stat Nonlin Soft Matter Phys. 2009 Feb;79(2 Pt 1):021106 [PMID: 19391705]
  8. Entropy (Basel). 2020 Nov 07;22(11): [PMID: 33287033]
  9. Phys Rev Lett. 1988 Nov 7;61(19):2205-2208 [PMID: 10039015]
  10. Phys Rev E. 2020 Feb;101(2-1):022110 [PMID: 32168615]
  11. Proc Natl Acad Sci U S A. 2014 Jan 21;111(3):E364-73 [PMID: 24395801]
  12. Phys Rev Lett. 1995 Apr 3;74(14):2694-2697 [PMID: 10057994]
  13. Entropy (Basel). 2021 Aug 22;23(8): [PMID: 34441233]
  14. Phys Rev Lett. 2005 Jul 22;95(4):040602 [PMID: 16090792]
  15. Entropy (Basel). 2020 Mar 24;22(3): [PMID: 33286146]
  16. Phys Rev Lett. 1994 May 30;72(22):3439-3443 [PMID: 10056200]
  17. Phys Rev E. 2016 Jun;93(6):062127 [PMID: 27415228]
  18. Phys Rev Lett. 2007 Sep 7;99(10):100602 [PMID: 17930381]
  19. Phys Rev Lett. 1993 Oct 11;71(15):2401-2404 [PMID: 10054671]
  20. Biochem Biophys Res Commun. 2019 Jan 15;508(3):690-694 [PMID: 30528391]
  21. Nature. 2012 Mar 07;483(7388):187-9 [PMID: 22398556]
  22. Entropy (Basel). 2021 Apr 12;23(4): [PMID: 33921298]
  23. Proc Natl Acad Sci U S A. 2010 Jan 26;107 Suppl 1:1757-64 [PMID: 20080672]
  24. Rep Prog Phys. 2012 Dec;75(12):126001 [PMID: 23168354]
  25. Nature. 2019 Apr;568(7753):526-531 [PMID: 30996348]
  26. Entropy (Basel). 2021 Aug 25;23(9): [PMID: 34573730]
  27. Phys Rev E. 2020 Mar;101(3-1):030101 [PMID: 32289888]
  28. Phys Rev Lett. 2001 Aug 6;87(6):065001 [PMID: 11497833]
  29. Nat Commun. 2019 Aug 6;10(1):3542 [PMID: 31387988]
  30. Proc Natl Acad Sci U S A. 2016 Dec 20;113(51):14817-14822 [PMID: 27930289]
  31. Entropy (Basel). 2019 Jun 06;21(6): [PMID: 33267288]
  32. Phys Rev E Stat Nonlin Soft Matter Phys. 2003 Jul;68(1 Pt 2):016105 [PMID: 12935198]
  33. PLoS One. 2015 Jul 23;10(7):e0132397 [PMID: 26203903]
  34. Phys Rev Lett. 2007 Feb 23;98(8):080602 [PMID: 17359081]
  35. Phys Rev E Stat Nonlin Soft Matter Phys. 2014 Mar;89(3):032107 [PMID: 24730790]
  36. J Phys Chem Lett. 2014 Mar 20;5(6):999-1003 [PMID: 26270979]
  37. Entropy (Basel). 2021 May 31;23(6): [PMID: 34073076]
  38. Science. 1978 Sep 1;201(4358):777-85 [PMID: 17738519]
  39. Phys Rev Lett. 2003 May 9;90(18):185006 [PMID: 12786016]
  40. Phys Rev E. 2017 Jun;95(6-1):062107 [PMID: 28709324]
  41. Phys Rev Lett. 2000 Feb 7;84(6):1192-5 [PMID: 11017476]
  42. Entropy (Basel). 2018 Aug 03;20(8): [PMID: 33265663]
  43. Front Psychol. 2013 Oct 07;4:710 [PMID: 24109469]
  44. Phys Rev Lett. 2012 May 11;108(19):190602 [PMID: 23003019]

Word Cloud

Created with Highcharts 10.0.0informationnon-equilibriumtheorytimePDFtime-dependentrateentropyInformationgeometricprocessesdistanceprobabilitydensityevolvesdiscusstime-varyingetcthermodynamicimplicationslengthgeometryself-organizationprovidesinterdisciplinarymethodunderstandimportantphenomenamanyresearchfieldsrangingastrophysicallaboratoryfluids/plasmasbiologicalsystemsparticularenablesusenvisionevolutiontermsdimensionlessquantifyingunfoldsfunctionrecentdevelopmentsfocusingaspectsegmeanvaluevariancetemperaturephysical/biologicalcomparedifferentdistancestwogivenPDFshighlightimportancepath-dependentroleΓ=dLdtrelativerelationsproductionheatfluxdissipatedworkfreeenergyvariousinequalitiesamongLrepresentingtotalnumberstatisticallydistinguishablestatesexploregeodesicsolutioncontrolGeometryFluctuationsNon-EquilibriumThermodynamicsGeodesicsComplexSystemsFokker-planckequationLangevinequationsfluctuationsfunctions

Similar Articles

Cited By