The Bioactivity Prediction of Peptides from Tuna Skin Collagen Using Integrated Method Combining In Vitro and In Silico.

Liza Devita, Hanifah Nuryani Lioe, Mala Nurilmala, Maggy T Suhartono
Author Information
  1. Liza Devita: Department of Food Science and Technology, Faculty of Agricultural Engineering and Technology, Bogor Agricultural University, Bogor 16680, Indonesia.
  2. Hanifah Nuryani Lioe: Department of Food Science and Technology, Faculty of Agricultural Engineering and Technology, Bogor Agricultural University, Bogor 16680, Indonesia. ORCID
  3. Mala Nurilmala: Department of Aquatic Product Technology, Faculty of Fisheries and Marine Sciences, Bogor Agricultural University, Bogor 16680, Indonesia.
  4. Maggy T Suhartono: Department of Food Science and Technology, Faculty of Agricultural Engineering and Technology, Bogor Agricultural University, Bogor 16680, Indonesia.

Abstract

The hydrolysates and peptide fractions of bigeye tuna () skin collagen have been successfully studied. The hydrolysates (HPA, HPN, HPS, HBA, HBN, HBS) were the result of the hydrolysis of collagen using alcalase, neutrase, and savinase. The peptide fractions (PPA, PPN, PPS, PBA, PBN, PBS) were the fractions obtained following ultrafiltration of the hydrolysates. The antioxidant activities of the hydrolysates and peptide fractions were studied using the DPPH method. The effects of collagen types, enzymes, and molecular sizes on the antioxidant activities were analyzed using profile plots analysis. The amino acid sequences of the peptides in the fraction with the highest antioxidant activity were analyzed using LC-MS/MS. Finally, their bioactivity and characteristics were studied using in silico analysis. The hydrolysates and peptide fractions provided antioxidant activity (6.17-135.40 µmol AAE/g protein). The lower molecular weight fraction had higher antioxidant activity. Collagen from pepsin treatment produced higher activity than that of bromelain treatment. The fraction from collagen hydrolysates by savinase treatment had the highest activity compared to neutrase and alcalase treatments. The peptides in the PBN and PPS fractions of <3 kDa had antidiabetic, antihypertensive and antioxidant activities. In conclusion, they have the potential to be used in food and health applications.

Keywords

References

  1. J Food Sci Technol. 2018 Jun;55(6):2310-2317 [PMID: 29892131]
  2. Mar Drugs. 2016 Oct 17;14(10): [PMID: 27763502]
  3. Molecules. 2014 Jul 31;19(8):11211-30 [PMID: 25090114]
  4. Mar Drugs. 2017 Jan 11;15(1): [PMID: 28085023]
  5. J Fungi (Basel). 2021 Feb 10;7(2): [PMID: 33578728]
  6. Food Chem. 2012 Dec 1;135(3):1789-95 [PMID: 22953924]
  7. Nutrients. 2011 Sep;3(9):765-91 [PMID: 22254123]
  8. RSC Adv. 2019 Aug 28;9(46):27032-27041 [PMID: 35528566]
  9. Food Technol Biotechnol. 2014 Dec;52(4):495-504 [PMID: 27904323]
  10. Arch Biochem Biophys. 1988 Nov 15;267(1):262-70 [PMID: 3196029]
  11. Mar Drugs. 2019 Apr 13;17(4): [PMID: 31013895]
  12. J Food Biochem. 2019 May;43(5):e12825 [PMID: 31353514]
  13. J Dairy Res. 2011 Feb;78(1):72-9 [PMID: 21214965]
  14. Mar Drugs. 2020 Jan 31;18(2): [PMID: 32023998]
  15. Mar Drugs. 2013 Nov 21;11(11):4641-61 [PMID: 24284428]
  16. Acta Sci Pol Technol Aliment. 2015 Jul-Sep;14(3):181-190 [PMID: 28068025]
  17. Molecules. 2017 Apr 22;22(4): [PMID: 28441731]
  18. Peptides. 2012 Aug;36(2):240-50 [PMID: 22652579]
  19. Int J Mol Sci. 2019 Nov 27;20(23): [PMID: 31783634]
  20. Pharmaceuticals (Basel). 2014 Mar 03;7(3):265-310 [PMID: 24594555]
  21. Food Chem. 2008 May 15;108(2):727-36 [PMID: 26059154]
  22. Int J Biol Macromol. 2019 Oct 1;138:483-491 [PMID: 31330209]
  23. Mar Drugs. 2021 Apr 16;19(4): [PMID: 33923409]
  24. Bioresour Technol. 2009 Jul;100(13):3419-25 [PMID: 19299123]
  25. Bioinformatics. 2013 May 1;29(9):1120-6 [PMID: 23505299]
  26. Mar Drugs. 2019 May 01;17(5): [PMID: 31052462]
  27. J Food Sci. 2011 Oct;76(8):C1149-55 [PMID: 22417578]
  28. Meat Sci. 2012 Jan;90(1):226-35 [PMID: 21880436]
  29. Pharmaceuticals (Basel). 2013 Nov 28;6(12):1543-75 [PMID: 24287494]
  30. Peptides. 2012 Jan;33(1):178-85 [PMID: 22138166]
  31. Clin Immunol. 2010 Apr;135(1):1-11 [PMID: 20116332]
  32. J Food Sci Technol. 2015 Sep;52(9):5377-92 [PMID: 26344955]
  33. Biosci Rep. 2017 Jan 17;37(1): [PMID: 27980020]
  34. Foods. 2020 Jul 24;9(8): [PMID: 32722144]
  35. Adv Food Nutr Res. 2012;65:249-60 [PMID: 22361192]
  36. J Biol Chem. 1951 Nov;193(1):265-75 [PMID: 14907713]
  37. Int J Biol Macromol. 2019 Aug 15;135:668-676 [PMID: 31154039]
  38. Evid Based Complement Alternat Med. 2011;2011:536139 [PMID: 19770266]
  39. J Sci Food Agric. 2010 Aug 30;90(11):1855-60 [PMID: 20602516]
  40. Food Chem. 2013 Jun 1;138(2-3):1713-9 [PMID: 23411302]

Grants

  1. /The Ministry of Agriculture Republic Indonesia

Word Cloud

Created with Highcharts 10.0.0fractionsantioxidanthydrolysatesactivitypeptidecollagenusingstudiedactivitiespeptidesfractiontreatmenthydrolysisalcalaseneutrasesavinasePPSPBNultrafiltrationmolecularanalyzedanalysishighestsilicoproteinhigherCollagenbigeyetunaskinsuccessfullyHPAHPNHPSHBAHBNHBSresultPPAPPNPBAPBSobtainedfollowingDPPHmethodeffectstypesenzymessizesprofileplotsaminoacidsequencesLC-MS/MSFinallybioactivitycharacteristicsprovided617-13540µmolAAE/glowerweightpepsinproducedbromelaincomparedtreatments<3kDaantidiabeticantihypertensiveconclusionpotentialusedfoodhealthapplicationsBioactivityPredictionPeptidesTunaSkinUsingIntegratedMethodCombiningVitroSilicoThunnusobesusbioactiveenzymaticfisheryby-product

Similar Articles

Cited By