Can Autism Be Diagnosed with Artificial Intelligence? A Narrative Review.

Ahmad Chaddad, Jiali Li, Qizong Lu, Yujie Li, Idowu Paul Okuwobi, Camel Tanougast, Christian Desrosiers, Tamim Niazi
Author Information
  1. Ahmad Chaddad: School of Artificial Intelligence, Guilin Universiy of Electronic Technology, Guilin 541004, China. ORCID
  2. Jiali Li: School of Artificial Intelligence, Guilin Universiy of Electronic Technology, Guilin 541004, China.
  3. Qizong Lu: School of Artificial Intelligence, Guilin Universiy of Electronic Technology, Guilin 541004, China.
  4. Yujie Li: School of Artificial Intelligence, Guilin Universiy of Electronic Technology, Guilin 541004, China.
  5. Idowu Paul Okuwobi: School of Artificial Intelligence, Guilin Universiy of Electronic Technology, Guilin 541004, China.
  6. Camel Tanougast: Laboratoire de Conception, Optimisation et Modélisation des Systèmes, University of Lorraine, 57070 Metz, France. ORCID
  7. Christian Desrosiers: The Laboratory for Imagery, Vision and Artificial Intelligence, École de Technologie Supérieure (ETS), Montreal, QC H3C 1K3, Canada.
  8. Tamim Niazi: Lady Davis Institute for Medical Research, McGill University, Montreal, QC H3T 1E2, Canada.

Abstract

Radiomics with deep learning models have become popular in computer-aided diagnosis and have outperformed human experts on many clinical tasks. Specifically, radiomic models based on artificial intelligence (AI) are using medical data (i.e., images, molecular data, clinical variables, etc.) for predicting clinical tasks such as autism spectrum disorder (ASD). In this review, we summarized and discussed the radiomic techniques used for ASD analysis. Currently, the limited radiomic work of ASD is related to the variation of morphological features of brain thickness that is different from texture analysis. These techniques are based on imaging shape features that can be used with predictive models for predicting ASD. This review explores the progress of ASD-based radiomics with a brief description of ASD and the current non-invasive technique used to classify between ASD and healthy control (HC) subjects. With AI, new radiomic models using the deep learning techniques will be also described. To consider the texture analysis with deep CNNs, more investigations are suggested to be integrated with additional validation steps on various MRI sites.

Keywords

References

  1. Prog Neuropsychopharmacol Biol Psychiatry. 2021 Jan 10;104:109989 [PMID: 32512131]
  2. IEEE J Biomed Health Inform. 2019 Mar;23(2):795-804 [PMID: 29993848]
  3. IEEE Trans Neural Netw Learn Syst. 2021 Nov;32(11):4793-4813 [PMID: 33079674]
  4. Prog Neuropsychopharmacol Biol Psychiatry. 2016 Jan 4;64:1-9 [PMID: 26148789]
  5. Am J Psychiatry. 2017 Jan 1;174(1):26-35 [PMID: 27855484]
  6. Neurosci Lett. 2021 Jan 18;742:135519 [PMID: 33246027]
  7. Mol Autism. 2020 Jan 13;11(1):5 [PMID: 31956394]
  8. Int J Epidemiol. 2009 Oct;38(5):1245-54 [PMID: 19737795]
  9. J Neurodev Disord. 2016 May 05;8:20 [PMID: 27158271]
  10. Transl Psychiatry. 2020 Sep 30;10(1):333 [PMID: 32999273]
  11. Med Phys. 2021 May;48(5):2315-2326 [PMID: 33378589]
  12. Front Neurosci. 2020 Jan 14;13:1325 [PMID: 32009868]
  13. Nature. 2016 Oct 05;538(7623):20-23 [PMID: 27708329]
  14. Sci Transl Med. 2010 Sep 15;2(49):49ra68 [PMID: 20844286]
  15. Indian J Med Res. 2020 Apr;151(4):263-265 [PMID: 32461386]
  16. Hum Brain Mapp. 2016 Jul;37(7):2616-29 [PMID: 27061356]
  17. Proc IEEE Int Symp Biomed Imaging. 2019 Apr;2019:1052-1056 [PMID: 31681457]
  18. J Biomed Inform. 2018 Sep;85:189-203 [PMID: 30031057]
  19. Front Psychiatry. 2019 Jul 04;10:392 [PMID: 31333507]
  20. Neuroimage. 2000 Jun;11(6 Pt 1):805-21 [PMID: 10860804]
  21. J Autism Dev Disord. 2000 Jun;30(3):205-23 [PMID: 11055457]
  22. Front Oncol. 2019 May 21;9:374 [PMID: 31165039]
  23. Proc IEEE Int Symp Biomed Imaging. 2019 Apr;2019:404-408 [PMID: 32256966]
  24. Front Neurosci. 2021 Jan 28;14:629630 [PMID: 33584183]
  25. IEEE Trans Neural Netw Learn Syst. 2021 Jul;32(7):2847-2861 [PMID: 32692687]
  26. Comput Intell Neurosci. 2021 May 26;2021:5550914 [PMID: 34122531]
  27. J Am Acad Child Adolesc Psychiatry. 1997 Feb;36(2):282-90 [PMID: 9031582]
  28. Int J Environ Res Public Health. 2020 Feb 04;17(3): [PMID: 32033231]
  29. Psychiatry Res. 2015 Nov 30;234(2):239-51 [PMID: 26456415]
  30. Med Phys. 2020 Jan;47(1):119-131 [PMID: 31682019]
  31. Semin Pediatr Neurol. 2020 Jul;34:100805 [PMID: 32446442]
  32. Trends Genet. 2020 Apr;36(4):228-231 [PMID: 32037010]
  33. Clin Neurophysiol. 2005 May;116(5):1188-94 [PMID: 15826861]
  34. Nucl Med Mol Imaging. 2018 Apr;52(2):89-90 [PMID: 29662556]
  35. PLoS One. 2018 Apr 17;13(4):e0194856 [PMID: 29664902]
  36. Proc IEEE Int Symp Biomed Imaging. 2019 Apr;2019:1891-1895 [PMID: 31741704]
  37. Biol Psychiatry Cogn Neurosci Neuroimaging. 2020 Aug;5(8):791-798 [PMID: 31982357]
  38. Annu Int Conf IEEE Eng Med Biol Soc. 2016 Aug;2016:4035-4038 [PMID: 28325002]
  39. Mol Autism. 2020 Jun 18;11(1):51 [PMID: 32552879]
  40. Front Neurosci. 2021 Jun 15;15:685005 [PMID: 34220441]
  41. Annu Int Conf IEEE Eng Med Biol Soc. 2021 Nov;2021:412-415 [PMID: 34891321]
  42. Autism Res. 2021 Feb;14(2):333-342 [PMID: 32869953]
  43. Am J Public Health. 1996 May;86(5):726-8 [PMID: 8629727]
  44. Nature. 2017 Feb 15;542(7641):348-351 [PMID: 28202961]
  45. Codas. 2013;25(2):191-2 [PMID: 24413388]
  46. Brain Inform. 2016 Mar;3(1):53-61 [PMID: 27747598]
  47. Neurology. 1997 Aug;49(2):546-51 [PMID: 9270594]
  48. Med Image Anal. 2017 Jan;35:375-389 [PMID: 27585835]
  49. J Psychiatry Neurosci. 2019 Oct 11;45(3):188-197 [PMID: 31603639]
  50. Am J Psychiatry. 2013 Aug;170(8):899-908 [PMID: 23511344]
  51. Cell Stem Cell. 2020 Jul 2;27(1):35-49.e6 [PMID: 32619517]
  52. Sci Rep. 2017 Dec 14;7(1):17584 [PMID: 29242499]
  53. Front Neurosci. 2019 Dec 13;13:1346 [PMID: 31920509]
  54. Cancers (Basel). 2019 Aug 10;11(8): [PMID: 31405148]
  55. Sci Rep. 2018 May 1;8(1):6828 [PMID: 29717196]
  56. Med Image Anal. 2021 Dec;74:102191 [PMID: 34509168]
  57. Inform Health Soc Care. 2019 Sep;44(3):278-297 [PMID: 29436887]
  58. Phys Med. 2019 Sep;65:99-105 [PMID: 31446358]
  59. Eur J Hum Genet. 2011 Mar;19(3):353-9 [PMID: 21102624]
  60. Front Neuroinform. 2021 Jun 24;15:635657 [PMID: 34248531]
  61. Mol Autism. 2017 Mar 4;8:8 [PMID: 28316772]
  62. BMC Neurosci. 2017 Jul 11;18(1):52 [PMID: 28821235]
  63. PLoS One. 2020 Nov 9;15(11):e0241856 [PMID: 33166335]
  64. Biol Psychiatry. 2017 Aug 1;82(3):186-193 [PMID: 28392081]
  65. Brain Sci. 2020 Dec 07;10(12): [PMID: 33297436]
  66. Acad Radiol. 2022 Mar;29 Suppl 3:S28-S35 [PMID: 33160862]
  67. BMC Med. 2018 Jul 2;16(1):101 [PMID: 29961422]
  68. Brain Behav. 2021 Aug;11(8):e2238 [PMID: 34264004]
  69. Dev Psychopathol. 2018 May;30(2):479-495 [PMID: 28631578]
  70. J Am Acad Child Adolesc Psychiatry. 2018 Nov;57(11):837-848.e2 [PMID: 30392625]
  71. Front Comput Neurosci. 2021 Apr 08;15:654315 [PMID: 33897398]
  72. J Am Acad Child Adolesc Psychiatry. 2020 Sep;59(9):1069-1079 [PMID: 31449875]
  73. Pediatrics. 2020 Jan;145(1): [PMID: 31843864]
  74. J Am Acad Child Adolesc Psychiatry. 2020 Dec;59(12):1353-1363.e2 [PMID: 31972262]
  75. Oncotarget. 2017 Nov 01;8(61):104393-104407 [PMID: 29262648]
  76. Neuroimage Clin. 2017 Aug 30;17:16-23 [PMID: 29034163]
  77. Autism. 2021 May;25(4):862-873 [PMID: 33213190]
  78. J Neurosci Methods. 2020 Nov 1;345:108884 [PMID: 32730918]
  79. Neuroimage. 2018 Apr 15;170:456-470 [PMID: 28450139]
  80. Neuroimage Clin. 2020;25:102181 [PMID: 31982680]
  81. Front Psychiatry. 2020 May 15;11:440 [PMID: 32477198]
  82. Autism Res. 2020 May;13(5):702-714 [PMID: 32073209]
  83. Neurology. 2001 Jul 24;57(2):245-54 [PMID: 11468308]
  84. Magn Reson Imaging. 2019 Jun;59:143-152 [PMID: 30880111]
  85. Brain. 2015 Jul;138(Pt 7):2046-58 [PMID: 25937563]
  86. Autism. 2021 Feb;25(2):416-428 [PMID: 32981352]
  87. Sci Rep. 2017 Mar 31;7:45639 [PMID: 28361913]
  88. Med Image Anal. 2022 Jul;79:102444 [PMID: 35472844]
  89. Neuroimage. 2012 Aug 15;62(2):774-81 [PMID: 22248573]
  90. Mol Autism. 2013 Jun 11;4(1):18 [PMID: 23758760]
  91. Compr Psychiatry. 2019 Apr;90:21-29 [PMID: 30658339]
  92. Front Oncol. 2018 Apr 04;8:96 [PMID: 29670857]
  93. IEEE Trans Neural Netw Learn Syst. 2022 Jan;33(1):3-11 [PMID: 34669582]

Word Cloud

Created with Highcharts 10.0.0ASDradiomicdeepmodelslearningclinicalAItechniquesusedanalysistasksbasedusingdatapredictingautismreviewfeaturestextureMRIRadiomicsbecomepopularcomputer-aideddiagnosisoutperformedhumanexpertsmanySpecificallyartificialintelligencemedicalieimagesmolecularvariablesetcspectrumdisordersummarizeddiscussedCurrentlylimitedworkrelatedvariationmorphologicalbrainthicknessdifferentimagingshapecanpredictiveexploresprogressASD-basedradiomicsbriefdescriptioncurrentnon-invasivetechniqueclassifyhealthycontrolHCsubjectsnewwillalsodescribedconsiderCNNsinvestigationssuggestedintegratedadditionalvalidationstepsvarioussitesCanAutismDiagnosedArtificialIntelligence?NarrativeReview

Similar Articles

Cited By