Raman Imaging and Fluorescence Lifetime Imaging Microscopy for Diagnosis of Cancer State and Metabolic Monitoring.

Lucas Becker, Nicole Janssen, Shannon L Layland, Thomas E Mürdter, Anne T Nies, Katja Schenke-Layland, Julia Marzi
Author Information
  1. Lucas Becker: Department for Medical Technologies and Regenerative Medicine, Institute of Biomedical Engineering, University of Tübingen, 72076 Tübingen, Germany.
  2. Nicole Janssen: Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, University of Tübingen, 72076 Tübingen, Germany.
  3. Shannon L Layland: Department for Medical Technologies and Regenerative Medicine, Institute of Biomedical Engineering, University of Tübingen, 72076 Tübingen, Germany.
  4. Thomas E Mürdter: Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, University of Tübingen, 72076 Tübingen, Germany.
  5. Anne T Nies: Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, 72076 Tübingen, Germany. ORCID
  6. Katja Schenke-Layland: Department for Medical Technologies and Regenerative Medicine, Institute of Biomedical Engineering, University of Tübingen, 72076 Tübingen, Germany. ORCID
  7. Julia Marzi: Department for Medical Technologies and Regenerative Medicine, Institute of Biomedical Engineering, University of Tübingen, 72076 Tübingen, Germany. ORCID

Abstract

Hurdles for effective tumor therapy are delayed detection and limited effectiveness of systemic drug therapies by patient-specific multidrug resistance. Non-invasive bioimaging tools such as fluorescence lifetime imaging microscopy (FLIM) and Raman-microspectroscopy have evolved over the last decade, providing the potential to be translated into clinics for early-stage disease detection, in vitro drug screening, and drug efficacy studies in personalized medicine. Accessing tissue- and cell-specific spectral signatures, Raman microspectroscopy has emerged as a diagnostic tool to identify precancerous lesions, cancer stages, or cell malignancy. In vivo Raman measurements have been enabled by recent technological advances in Raman endoscopy and signal-enhancing setups such as coherent anti-stokes Raman spectroscopy or surface-enhanced Raman spectroscopy. FLIM enables in situ investigations of metabolic processes such as glycolysis, oxidative stress, or mitochondrial activity by using the autofluorescence of co-enzymes NADH and FAD, which are associated with intrinsic proteins as a direct measure of tumor metabolism, cell death stages and drug efficacy. The combination of non-invasive and molecular-sensitive in situ techniques and advanced 3D tumor models such as patient-derived organoids or microtumors allows the recapitulation of tumor physiology and metabolism in vitro and facilitates the screening for patient-individualized drug treatment options.

Keywords

References

  1. Nanoscale. 2013 Nov 7;5(21):10591-8 [PMID: 24057012]
  2. J Gen Physiol. 1927 Mar 7;8(6):519-30 [PMID: 19872213]
  3. Curr Drug Metab. 2008 Jan;9(1):1-11 [PMID: 18220566]
  4. Chem Rev. 2010 May 12;110(5):2641-84 [PMID: 20356094]
  5. Nat Biotechnol. 2003 Nov;21(11):1387-95 [PMID: 14595367]
  6. Biosens Bioelectron. 2014 Jan 15;51:238-43 [PMID: 23973735]
  7. Opt Express. 2011 Jul 4;19(14):13565-77 [PMID: 21747512]
  8. Acta Biomater. 2018 Oct 15;80:85-96 [PMID: 30261339]
  9. J Natl Compr Canc Netw. 2010 Dec;8(12):1358-86 [PMID: 21147902]
  10. Rev Sci Instrum. 1979 Jan;50(1):64 [PMID: 18699340]
  11. Nature. 2010 Mar 18;464(7287):392-5 [PMID: 20237566]
  12. PLoS One. 2013;8(2):e52960 [PMID: 23390489]
  13. Methods Mol Biol. 2015;1264:395-419 [PMID: 25631031]
  14. J Exp Zool. 1959 Oct-Dec;142:5-73 [PMID: 13711840]
  15. Front Endocrinol (Lausanne). 2016 Jul 25;7:99 [PMID: 27504106]
  16. Faraday Discuss. 2004;126:141-57; discussion 169-83 [PMID: 14992404]
  17. Front Oncol. 2021 May 24;11:666059 [PMID: 34109119]
  18. Cancer Res. 2016 Nov 15;76(22):6495-6506 [PMID: 27671678]
  19. J Biomed Opt. 2007 Mar-Apr;12(2):024014 [PMID: 17477729]
  20. Oncogene. 2002 Dec 12;21(57):8843-51 [PMID: 12483536]
  21. Biosens Bioelectron. 2012 May 15;35(1):213-217 [PMID: 22465448]
  22. Analyst. 2021 Jun 28;146(13):4195-4211 [PMID: 34060548]
  23. Nature. 2009 May 14;459(7244):262-5 [PMID: 19329995]
  24. Anal Bioanal Chem. 2015 Nov;407(27):8291-301 [PMID: 26093843]
  25. Nat Nanotechnol. 2013 Sep;8(9):682-9 [PMID: 23912062]
  26. Mol Biol Cell. 2010 Dec;21(24):4387-99 [PMID: 20962267]
  27. Cancer Causes Control. 2008 Mar;19(2):175-81 [PMID: 18027095]
  28. Head Neck. 2015 Apr;37(4):511-7 [PMID: 24677300]
  29. J Mol Biol. 1972 Sep 14;70(1):117-32 [PMID: 4672486]
  30. Biosens Bioelectron. 2012 Mar 15;33(1):293-8 [PMID: 22265083]
  31. J Biophotonics. 2016 Mar 11;10(3):404-414 [PMID: 27854107]
  32. Cytometry A. 2020 May;97(5):471-482 [PMID: 31486581]
  33. Cancer J. 2011 Nov-Dec;17(6):528-36 [PMID: 22157297]
  34. Appl Spectrosc. 2007 Jun;61(6):579-84 [PMID: 17650367]
  35. Cancers (Basel). 2021 Feb 19;13(4): [PMID: 33669619]
  36. Photochem Photobiol Sci. 2005 Jan;4(1):13-22 [PMID: 15616687]
  37. Nanoscale. 2016 Jul 7;8(25):12803-11 [PMID: 27297745]
  38. Materials (Basel). 2018 Dec 24;12(1): [PMID: 30586856]
  39. J Biomed Opt. 2014;19(11):111609 [PMID: 24938406]
  40. Curr Mol Imaging. 2014;3(2):144-161 [PMID: 26023359]
  41. J Biomed Opt. 2003 Jul;8(3):381-90 [PMID: 12880343]
  42. J Biophotonics. 2019 Jun;12(6):e201800378 [PMID: 30636030]
  43. Bioconjug Chem. 2015 Jun 17;26(6):963-74 [PMID: 25961514]
  44. Small. 2018 Oct;14(42):e1703617 [PMID: 30239130]
  45. Opt Lett. 2008 Apr 1;33(7):711-3 [PMID: 18382526]
  46. J Biophotonics. 2020 Mar;13(3):e201960119 [PMID: 31742905]
  47. Analyst. 2014 Mar 7;139(5):1155-61 [PMID: 24427772]
  48. Biochim Biophys Acta. 2013 Nov;1828(11):2436-43 [PMID: 23831602]
  49. Biomaterials. 2016 Nov;108:197-213 [PMID: 27639438]
  50. J Biomed Opt. 2012 Oct;17(10):105002 [PMID: 23223996]
  51. Chem Asian J. 2021 Mar 1;16(5):409-422 [PMID: 33443291]
  52. J Exp Med. 2017 Mar 6;214(3):579-596 [PMID: 28232471]
  53. Spectrochim Acta A Mol Biomol Spectrosc. 2017 Jun 15;181:270-275 [PMID: 28384603]
  54. BMC Cancer. 2016 Jul 26;16:534 [PMID: 27460472]
  55. Biomed Opt Express. 2010 Aug 19;1(2):627-640 [PMID: 21258496]
  56. Proc Natl Acad Sci U S A. 1971 Jul;68(7):1572-6 [PMID: 5283948]
  57. Neurosci Lett. 1993 Feb 5;150(1):5-8 [PMID: 8469403]
  58. J Biomed Opt. 2004 May-Jun;9(3):593-600 [PMID: 15189098]
  59. PLoS One. 2014 Sep 08;9(9):e107115 [PMID: 25198698]
  60. Metabolites. 2020 Dec 01;10(12): [PMID: 33271860]
  61. Adv Drug Deliv Rev. 2014 Dec 15;79-80:30-9 [PMID: 24819220]
  62. Org Lett. 2012 May 18;14(10):2564-7 [PMID: 22571681]
  63. Anal Chem. 2010 Jul 15;82(14):5993-9 [PMID: 20524627]
  64. Photochem Photobiol. 1982 Nov;36(5):585-93 [PMID: 7178240]
  65. Commun Biol. 2020 May 14;3(1):236 [PMID: 32409770]
  66. J Biophotonics. 2018 Apr;11(4):e201700251 [PMID: 29239125]
  67. Int J Cancer. 2010 Jan 1;126(1):104-13 [PMID: 19588498]
  68. NMR Biomed. 2011 Jul;24(6):582-91 [PMID: 21387439]
  69. J Biol Chem. 1979 Jun 10;254(11):4764-71 [PMID: 220260]
  70. Biochem Biophys Res Commun. 1975 Jul 22;65(2):575-82 [PMID: 167775]
  71. Intern Med Rev (Wash D C). 2017 May;3(5): [PMID: 29034362]
  72. Nanoscale. 2019 Sep 7;11(33):15530-15536 [PMID: 31393497]
  73. J Am Chem Soc. 2007 Jan 10;129(1):14-5 [PMID: 17199265]
  74. Appl Opt. 2005 Aug 1;44(22):4722-32 [PMID: 16075885]
  75. Sci Transl Med. 2015 Oct 14;7(309):309ra163 [PMID: 26468325]
  76. BMJ. 2012 Jul 12;345:e4505 [PMID: 22791786]
  77. Small. 2014 Nov;10(22):4700-10 [PMID: 25115777]
  78. BMC Cancer. 2009 Jan 30;9:42 [PMID: 19183472]
  79. J Neurosurg. 2020 Oct 2;:1-11 [PMID: 33007757]
  80. Br J Cancer. 2020 Mar;122(6):735-744 [PMID: 31894140]
  81. Photochem Photobiol. 1998 Sep;68(3):427-31 [PMID: 9747597]
  82. Histochem Cell Biol. 2009 Jul;132(1):39-46 [PMID: 19365636]
  83. Lancet Oncol. 2010 Aug;11(8):725-32 [PMID: 20598634]
  84. Nanomedicine. 2008 Mar;4(1):49-56 [PMID: 18249155]
  85. Gastroenterology. 2014 Jan;146(1):27-32 [PMID: 24216327]
  86. Microsc Res Tech. 2004 Jan 1;63(1):58-66 [PMID: 14677134]
  87. Int J Mol Sci. 2015 Mar 11;16(3):5517-27 [PMID: 25768338]
  88. J Microsc. 2007 Mar;225(Pt 3):209-13 [PMID: 17371443]
  89. J Neurosurg. 2021 Oct 22;:1-9 [PMID: 34678775]
  90. Int J Cancer. 2011 Jun 1;128(11):2673-80 [PMID: 20726002]
  91. Anal Chem. 2006 Apr 1;78(7):2272-8 [PMID: 16579608]
  92. Biopolymers. 2003;72(1):1-9 [PMID: 12400086]
  93. Molecules. 2020 Jun 26;25(12): [PMID: 32604876]
  94. Biomed Opt Express. 2020 Nov 11;11(12):7109-7119 [PMID: 33408983]
  95. Photochem Photobiol. 2000 Jul;72(1):146-50 [PMID: 10911740]
  96. Methods Appl Fluoresc. 2015 Oct 29;3(4):042006 [PMID: 29148511]
  97. Assay Drug Dev Technol. 2014 May;12(4):207-18 [PMID: 24831787]
  98. Endoscopy. 2011 Apr;43(4):312-6 [PMID: 21412704]
  99. Opt Lett. 2006 Jul 1;31(13):2015-7 [PMID: 16770417]
  100. Small GTPases. 2015;6(2):123-33 [PMID: 26103062]
  101. Science. 2009 May 22;324(5930):1029-33 [PMID: 19460998]
  102. Biomaterials. 2013 Dec;34(37):9307-17 [PMID: 24016849]
  103. Nat Protoc. 2009;4(3):309-24 [PMID: 19214182]
  104. Analyst. 2018 Dec 3;143(24):6014-6024 [PMID: 30398225]
  105. Anal Chem. 2017 Aug 1;89(15):8104-8111 [PMID: 28661125]
  106. Biomark Med. 2010 Apr;4(2):241-63 [PMID: 20406068]
  107. Bioconjug Chem. 2019 May 15;30(5):1371-1384 [PMID: 30946570]
  108. J Biomed Opt. 2017 Jun 1;22(6):66007 [PMID: 28613348]
  109. Tomography. 2015 Dec;1(2):115-124 [PMID: 26771007]
  110. Nat Med. 2011 Mar;17(3):297-303 [PMID: 21383744]
  111. Cell Death Differ. 1999 Feb;6(2):99-104 [PMID: 10200555]
  112. Anal Chem. 2000 Aug 15;72(16):3771-5 [PMID: 10959962]
  113. Gastrointest Endosc. 2003 Mar;57(3):396-402 [PMID: 12612529]
  114. J Cancer. 2020 Mar 26;11(12):3615-3622 [PMID: 32284758]
  115. Sci Rep. 2019 Aug 20;9(1):12092 [PMID: 31431666]
  116. Radiology. 2011 May;259(2):393-405 [PMID: 21415247]
  117. Sci Rep. 2018 Jan 29;8(1):1792 [PMID: 29379121]
  118. CA Cancer J Clin. 2021 Jan;71(1):7-33 [PMID: 33433946]
  119. Anal Biochem. 1980 May 1;104(1):118-23 [PMID: 6770714]
  120. Cancers (Basel). 2019 May 29;11(6): [PMID: 31146464]
  121. Cytometry A. 2019 Jan;95(1):80-92 [PMID: 30343512]
  122. Langmuir. 2006 Jan 3;22(1):32-41 [PMID: 16378396]
  123. PLoS One. 2013 Sep 16;8(9):e74200 [PMID: 24066121]
  124. Annu Int Conf IEEE Eng Med Biol Soc. 2018 Jul;2018:3009-3012 [PMID: 30441030]
  125. Semin Surg Oncol. 2000 Jan-Feb;18(1):3-9 [PMID: 10617891]
  126. Breast. 2008 Feb;17(1):85-90 [PMID: 17764941]
  127. J Invest Dermatol. 2007 May;127(5):1205-9 [PMID: 17218938]
  128. Curr Oncol. 2012 Feb;19(1):e16-27 [PMID: 22328844]
  129. J Biol Methods. 2015;2(1): [PMID: 26146646]
  130. Cell. 2018 Sep 6;174(6):1586-1598.e12 [PMID: 30100188]
  131. Mol Imaging. 2007 May-Jun;6(3):205-11 [PMID: 17532886]
  132. Mol Cancer Res. 2010 Sep;8(9):1175-87 [PMID: 20693306]
  133. Adv Drug Deliv Rev. 2014 Dec 15;79-80:50-67 [PMID: 25453261]
  134. Anal Bioanal Chem. 2008 Jul;391(5):1871-9 [PMID: 18481048]
  135. Analyst. 2017 Apr 10;142(8):1207-1215 [PMID: 27840868]
  136. Spectrochim Acta A Mol Biomol Spectrosc. 2019 Nov 5;222:117210 [PMID: 31176149]
  137. Cancers (Basel). 2021 Mar 03;13(5): [PMID: 33802369]
  138. Macromol Biosci. 2013 Feb;13(2):234-41 [PMID: 23316003]
  139. Cancer Res. 1988 Sep 1;48(17):4827-33 [PMID: 3409223]
  140. Nat Rev Cancer. 2006 Oct;6(10):813-23 [PMID: 16990858]
  141. Anal Chem. 2015 Jan 20;87(2):960-6 [PMID: 25495077]
  142. Drug Discov Today. 2011 Apr;16(7-8):293-7 [PMID: 21277382]
  143. Br J Dermatol. 2008 Jul;159(1):152-61 [PMID: 18460029]
  144. Nat Rev Cancer. 2020 Nov;20(11):681-694 [PMID: 33024261]
  145. Cancer Res. 2006 Feb 1;66(3):1591-6 [PMID: 16452217]
  146. J Biomed Opt. 2016 Feb;21(2):25001 [PMID: 26836206]
  147. Chem Soc Rev. 2006 Mar;35(3):209-17 [PMID: 16505915]
  148. Nucleic Acids Res. 2013 Jan;41(Database issue):D955-61 [PMID: 23180760]
  149. Analyst. 2021 Apr 7;146(7):2277-2291 [PMID: 33617612]
  150. J Cell Biol. 2017 Jan 2;216(1):31-40 [PMID: 28031422]
  151. Acta Biomater. 2019 Apr 15;89:193-205 [PMID: 30878445]
  152. Opt Lett. 2006 Jan 15;31(2):241-3 [PMID: 16441043]
  153. J Control Release. 2018 Aug 28;284:133-143 [PMID: 29906554]
  154. Cancers (Basel). 2020 Sep 23;12(10): [PMID: 32977530]
  155. Sci Rep. 2020 Feb 7;10(1):2155 [PMID: 32034187]
  156. Exp Dermatol. 2017 Jul;26(7):607-614 [PMID: 27992081]
  157. Cancer Metastasis Rev. 2018 Dec;37(4):691-717 [PMID: 30569241]
  158. Talanta. 2018 Oct 1;188:507-515 [PMID: 30029406]
  159. J Natl Cancer Inst. 2007 Oct 3;99(19):1441-54 [PMID: 17895480]
  160. Cell Cycle. 2009 Feb 1;8(3):505-6 [PMID: 19176997]
  161. Nat Methods. 2007 Apr;4(4):359-65 [PMID: 17396127]
  162. Oral Oncol. 2020 Jun;105:104635 [PMID: 32247986]
  163. Phys Chem Chem Phys. 2012 Oct 5;14(37):12671-86 [PMID: 22806312]
  164. Biomed Opt Express. 2015 Jun 08;6(7):2380-97 [PMID: 26203368]
  165. Asia Oceania J Obstet Gynaecol. 1988 Dec;14(4):467-70 [PMID: 3240124]
  166. Proc Natl Acad Sci U S A. 2009 Aug 11;106(32):13511-6 [PMID: 19666578]
  167. Neurooncol Adv. 2020 Mar 12;2(1):vdaa035 [PMID: 32642692]
  168. Adv Healthc Mater. 2019 Jul;8(13):e1801557 [PMID: 31081261]
  169. Photochem Photobiol Sci. 2008 Jun;7(6):668-70 [PMID: 18528549]
  170. Sci Rep. 2020 Oct 7;10(1):16749 [PMID: 33028922]
  171. Adv Exp Med Biol. 2016;899:167-96 [PMID: 27325267]
  172. Curr Opin Biotechnol. 2005 Feb;16(1):19-27 [PMID: 15722011]
  173. Cancers (Basel). 2021 May 28;13(11): [PMID: 34071374]
  174. Front Bioeng Biotechnol. 2020 Jan 30;7:487 [PMID: 32083067]
  175. Proc Natl Acad Sci U S A. 1992 Feb 15;89(4):1271-5 [PMID: 1741380]
  176. BJU Int. 2006 Jun;97(6):1199-201 [PMID: 16566814]
  177. Biomed Opt Express. 2018 Aug 15;9(9):4294-4305 [PMID: 30615702]
  178. J Biomed Opt. 2012 Jul;17(7):077002 [PMID: 22894515]
  179. Nanoscale Res Lett. 2019 Jul 12;14(1):231 [PMID: 31300945]
  180. Chemistry. 2009;15(14):3560-6 [PMID: 19212987]
  181. Sci Rep. 2021 Aug 19;11(1):16864 [PMID: 34413447]
  182. Antioxid Redox Signal. 2008 Feb;10(2):179-206 [PMID: 18020963]
  183. Trends Cell Biol. 2017 Nov;27(11):863-875 [PMID: 28734735]
  184. Nat Commun. 2012 Feb 28;3:705 [PMID: 22426226]
  185. Appl Opt. 1981 Feb 15;20(4):533-5 [PMID: 20309152]
  186. Proc Natl Acad Sci U S A. 2004 Apr 6;101(14):4966-71 [PMID: 15051869]
  187. J Biomed Opt. 2012 Jan;17(1):016007 [PMID: 22352657]
  188. Cancer Discov. 2017 May;7(5):462-477 [PMID: 28331002]
  189. J Natl Cancer Inst. 1951 Dec;12(3):545-61 [PMID: 14889259]
  190. Front Bioeng Biotechnol. 2016 Feb 12;4:12 [PMID: 26904541]
  191. Exp Dermatol. 2012 Nov;21(11):831-6 [PMID: 22882324]
  192. Annu Rev Cell Biol. 1988;4:155-81 [PMID: 3058159]
  193. J Biomed Opt. 2014 Sep;19(9):96005 [PMID: 25202900]
  194. Small. 2016 Oct;12(40):5612-5621 [PMID: 27571395]
  195. Cancer Res. 2017 Jul 15;77(14):3942-3950 [PMID: 28659435]
  196. Angew Chem Int Ed Engl. 2018 Jun 11;57(24):7250-7254 [PMID: 29645336]
  197. J Natl Cancer Inst. 1971 Jan;46(1):113-20 [PMID: 5101993]
  198. Photochem Photobiol Sci. 2009 Mar;8(3):319-27 [PMID: 19255672]
  199. Opt Lett. 2009 Mar 15;34(6):758-60 [PMID: 19282923]
  200. J Microsc. 2008 May;230(Pt 2):172-6 [PMID: 18445145]
  201. Am J Clin Pathol. 2012 Nov;138(5):657-69 [PMID: 23086766]
  202. J Biophotonics. 2021 Jan;14(1):e202000275 [PMID: 32909380]
  203. Cancers (Basel). 2021 May 26;13(11): [PMID: 34073216]
  204. Cancers (Basel). 2021 May 15;13(10): [PMID: 34063518]
  205. Chem Sci. 2019 Feb 27;10(15):4227-4235 [PMID: 31057751]
  206. ACS Nano. 2018 Oct 23;12(10):9669-9679 [PMID: 30203645]
  207. Nat Commun. 2020 Jul 21;11(1):3475 [PMID: 32694610]
  208. Dis Colon Rectum. 2015 Jul;58(7):677-85 [PMID: 26200682]
  209. Oncotarget. 2011 Sep;2(9):728-36 [PMID: 21908901]
  210. Laryngoscope. 1984 Apr;94(4):488-94 [PMID: 6708692]
  211. Cell. 2018 Dec 13;175(7):1972-1988.e16 [PMID: 30550791]
  212. Cell Rep. 2017 Oct 3;21(1):274-288 [PMID: 28978480]
  213. Can Urol Assoc J. 2010 Feb;4(1):56-64 [PMID: 20165581]
  214. Clin Pharmacol Ther. 2018 Feb;103(2):210-216 [PMID: 29152729]
  215. Bioconjug Chem. 2008 Dec;19(12):2559-67 [PMID: 19090700]
  216. Biophys J. 2015 Mar 10;108(5):1013-26 [PMID: 25762314]
  217. J Biophotonics. 2020 Apr;13(4):e201960176 [PMID: 31909563]
  218. Small GTPases. 2011 Jul;2(4):239-244 [PMID: 22145098]
  219. Clin Neurol Neurosurg. 2015 Apr;131:42-6 [PMID: 25688033]
  220. Cytometry A. 2019 Jan;95(1):56-69 [PMID: 30296355]
  221. Methods Enzymol. 2003;360:509-42 [PMID: 12622166]
  222. Cancer Res. 2006 Mar 15;66(6):3317-22 [PMID: 16540686]
  223. Analyst. 2021 Jan 21;146(2):581-589 [PMID: 33179632]
  224. Ann Surg Oncol. 2008 May;15(5):1271-2 [PMID: 18320287]
  225. Analyst. 2017 Apr 10;142(8):1216-1226 [PMID: 28001146]
  226. Science. 1956 Feb 24;123(3191):309-14 [PMID: 13298683]
  227. Am J Epidemiol. 1995 Apr 1;141(7):680-9 [PMID: 7702044]
  228. J Biomed Opt. 2020 May;25(7):1-43 [PMID: 32406215]
  229. Clin Pharmacol Ther. 2018 May;103(5):770-777 [PMID: 29385237]
  230. J Microsc. 2012 Aug;247(2):202-7 [PMID: 22788550]

Grants

  1. EXC 2180 - 390900677/Deutsche Forschungsgemeinschaft
  2. GRK 2543/1/Deutsche Forschungsgemeinschaft
  3. INST 2388/64-1/Deutsche Forschungsgemeinschaft
  4. 33-729.55-3/214/Ministry of Science, Research and the Arts of Baden-Württemberg
  5. SI-BW 01222-91/Ministry of Science, Research and the Arts of Baden-Württemberg

Word Cloud

Created with Highcharts 10.0.0RamantumordrugimagingvitrositumetabolismdetectionfluorescencelifetimemicroscopyFLIMscreeningefficacymicrospectroscopystagescellspectroscopy3DmodelsImagingHurdleseffectivetherapydelayedlimitedeffectivenesssystemictherapiespatient-specificmultidrugresistanceNon-invasivebioimagingtoolsRaman-microspectroscopyevolvedlastdecadeprovidingpotentialtranslatedclinicsearly-stagediseasestudiespersonalizedmedicineAccessingtissue-cell-specificspectralsignaturesemergeddiagnostictoolidentifyprecancerouslesionscancermalignancyvivomeasurementsenabledrecenttechnologicaladvancesendoscopysignal-enhancingsetupscoherentanti-stokessurface-enhancedenablesinvestigationsmetabolicprocessesglycolysisoxidativestressmitochondrialactivityusingautofluorescenceco-enzymesNADHFADassociatedintrinsicproteinsdirectmeasuredeathcombinationnon-invasivemolecular-sensitivetechniquesadvancedpatient-derivedorganoidsmicrotumorsallowsrecapitulationphysiologyfacilitatespatient-individualizedtreatmentoptionsFluorescenceLifetimeMicroscopyDiagnosisCancerStateMetabolicMonitoringtissuediagnostics

Similar Articles

Cited By