Improving the Efficacy of Antimicrobials against Biofilm-Embedded Bacteria Using Bovine Hyaluronidase Azoximer (Longidaza).

Elena Trizna, Diana Baidamshina, Anna Gorshkova, Valentin Drucker, Mikhail Bogachev, Anton Tikhonov, Airat Kayumov
Author Information
  1. Elena Trizna: Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia.
  2. Diana Baidamshina: Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia.
  3. Anna Gorshkova: Limnological Institute of the Siberian Branch of the Russian Academy of Sciences, 664000 Irkutsk, Russia.
  4. Valentin Drucker: Limnological Institute of the Siberian Branch of the Russian Academy of Sciences, 664000 Irkutsk, Russia.
  5. Mikhail Bogachev: Biomedical Engineering Research Centre, St. Petersburg Electrotechnical University, 197022 St. Petersburg, Russia. ORCID
  6. Anton Tikhonov: NPO Petrovax Pharma LLC, 123112 Moscow, Russia.
  7. Airat Kayumov: Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia. ORCID

Abstract

While in a biofilm, bacteria are extremely resistant to both antimicrobials and the immune system, leading to the development of chronic infection. Here, we show that bovine hyaluronidase fused with a copolymer of 1,4-ethylenepiperazine N-oxide and (N-carboxymethyl) -1,4-ethylenepiperazinium bromide (Longidaza) destroys both mono- and dual-species biofilms formed by various bacteria. After 4 h of treatment with 750 units of the enzyme, the residual biofilms of , , , and preserved about 50-70% of their initial mass. Biomasses of dual-species biofilms formed by and the four latter species were reduced 1.5-fold after 24 h treatment, while the significant destruction of and was also observed after 4 h of treatment with Longidaza. Furthermore, when applied in combination, Longidaza increased the efficacy of various antimicrobials against biofilm-embedded bacteria, although with various increase-factor values depending on both the bacterial species and antimicrobials chosen. Taken together, our data indicate that Longidaza destroys the biofilm structure, facilitating the penetration of antimicrobials through the biofilm, and in this way improving their efficacy, lowering the required dose and thus also potentially reducing the associated side effects.

Keywords

References

  1. Can J Infect Dis Med Microbiol. 2018 Aug 26;2018:7624857 [PMID: 30224941]
  2. Microbiology (Reading). 2008 Mar;154(Pt 3):932-938 [PMID: 18310039]
  3. J Antibiot (Tokyo). 2015 May;68(5):297-301 [PMID: 25335695]
  4. Burns. 2010 Jun;36(4):461-8 [PMID: 20045259]
  5. Expert Opin Biol Ther. 2008 Aug;8(8):1159-66 [PMID: 18613767]
  6. J Control Release. 2015 Jul 10;209:150-8 [PMID: 25913364]
  7. Microbiologyopen. 2014 Dec;3(6):897-909 [PMID: 25257373]
  8. Antimicrob Agents Chemother. 2000 Jul;44(7):1818-24 [PMID: 10858336]
  9. Antimicrob Agents Chemother. 2017 Jan 24;61(2): [PMID: 27872074]
  10. J Antibiot (Tokyo). 2013 Feb;66(2):55-60 [PMID: 23149515]
  11. Nat Rev Microbiol. 2019 Jan;17(2):82-94 [PMID: 30337708]
  12. NPJ Biofilms Microbiomes. 2018 Oct 26;4:26 [PMID: 30393563]
  13. Mol Microbiol. 1998 May;28(3):449-61 [PMID: 9632250]
  14. J Healthc Eng. 2018 Oct 14;2018:2986742 [PMID: 30405898]
  15. Nat Clin Pract Urol. 2008 Nov;5(11):598-608 [PMID: 18852707]
  16. Sci Rep. 2017 Apr 07;7:46068 [PMID: 28387349]
  17. Microb Pathog. 2019 Jan;126:287-291 [PMID: 30447422]
  18. Turk J Urol. 2020 Nov;46(Supp. 1):S11-S18 [PMID: 33052843]
  19. PLoS Biol. 2017 Nov 27;15(11):e2003981 [PMID: 29176757]
  20. Ann Med Health Sci Res. 2014 Jan;4(1):100-4 [PMID: 24669340]
  21. Acta Histochem. 2018 May;120(4):303-311 [PMID: 29606555]
  22. Arch Microbiol. 2016 Jan;198(1):1-15 [PMID: 26377585]
  23. Burns. 2000 May;26(3):207-22 [PMID: 10741585]
  24. Clin Microbiol Infect. 2013 Feb;19(2):141-60 [PMID: 22117544]
  25. Int J Biol Macromol. 2020 Dec 1;164:4205-4217 [PMID: 32916198]
  26. Clin Microbiol Rev. 2011 Jan;24(1):29-70 [PMID: 21233507]
  27. Infect Immun. 2016 May 24;84(6):1917-1929 [PMID: 27068096]
  28. Antimicrob Resist Infect Control. 2020 Oct 20;9(1):162 [PMID: 33081846]
  29. Microbes Infect. 2010 Jan;12(1):55-64 [PMID: 19883788]
  30. Appl Environ Microbiol. 2001 Dec;67(12):5608-13 [PMID: 11722913]
  31. Front Microbiol. 2015 Jul 14;6:705 [PMID: 26236291]
  32. Acta Naturae. 2015 Apr-Jun;7(2):102-7 [PMID: 26085951]
  33. Sci Adv. 2016 May 20;2(5):e1501632 [PMID: 27386527]
  34. mBio. 2019 Jul 30;10(4): [PMID: 31363032]
  35. IUBMB Life. 2020 Jul;72(7):1271-1285 [PMID: 32150327]
  36. Mar Drugs. 2021 Mar 31;19(4): [PMID: 33807362]
  37. PLoS One. 2009 Oct 09;4(10):e7370 [PMID: 19816605]
  38. Chem Soc Rev. 2013 Aug 7;42(15):6236-49 [PMID: 23446771]
  39. Sci Rep. 2020 Sep 9;10(1):14849 [PMID: 32908166]
  40. Pathogens. 2016 Nov 30;5(4): [PMID: 27916925]
  41. Antimicrob Agents Chemother. 2003 Jan;47(1):317-23 [PMID: 12499208]
  42. J Pharm Pharmacol. 2004 Jul;56(7):847-54 [PMID: 15233862]
  43. Antimicrob Agents Chemother. 2013 Jan;57(1):137-45 [PMID: 23070175]
  44. Clin Microbiol Infect. 2006 Oct;12(10):1034-6 [PMID: 16961644]
  45. Anal Bioanal Chem. 2019 Nov;411(27):7315-7325 [PMID: 31637462]
  46. Compr Rev Food Sci Food Saf. 2018 Nov;17(6):1484-1502 [PMID: 33350139]
  47. Urol Int. 2007;79 Suppl 1:32-6 [PMID: 17726350]
  48. Am J Med. 2002 Jul 8;113 Suppl 1A:5S-13S [PMID: 12113866]
  49. Eur J Clin Microbiol Infect Dis. 2015 May;34(5):877-86 [PMID: 25630538]
  50. J Am Coll Surg. 2009 Mar;208(3):348-54 [PMID: 19317995]
  51. Trends Mol Med. 2016 Nov;22(11):946-957 [PMID: 27692880]
  52. Front Microbiol. 2017 Nov 20;8:2246 [PMID: 29209288]
  53. Zh Mikrobiol Epidemiol Immunobiol. 2015 Jul-Aug;(4):71-4 [PMID: 26470422]
  54. Urologiia. 2021 Jun;(3):61-69 [PMID: 34251103]
  55. Nat Rev Microbiol. 2016 Aug 11;14(9):563-75 [PMID: 27510863]
  56. Nat Rev Urol. 2020 Apr;17(4):191 [PMID: 32203307]
  57. Urol Int. 2021;105(5-6):354-361 [PMID: 33691318]
  58. Int J Food Microbiol. 2014 Sep 18;187:26-32 [PMID: 25043896]
  59. Int J Biol Macromol. 2018 Oct 15;118(Pt A):419-426 [PMID: 29908271]
  60. J Bone Jt Infect. 2018 Apr 12;3(2):50-67 [PMID: 29761067]
  61. J Invest Dermatol. 2010 Jan;130(1):38-48 [PMID: 19626034]
  62. J Pediatr. 2009 Feb;154(2):183-8 [PMID: 18822427]
  63. Wound Repair Regen. 2012 Mar-Apr;20(2):125-36 [PMID: 22380687]
  64. Urology. 2006 Nov;68(5):942-6 [PMID: 17113884]
  65. Int J Biol Macromol. 2018 Oct 15;118(Pt B):2193-2200 [PMID: 30012489]
  66. Int J Biol Macromol. 2020 Dec 1;164:2293-2300 [PMID: 32768482]
  67. Int J Biol Macromol. 2017 Dec;105(Pt 1):385-392 [PMID: 28756196]
  68. Urologiia. 2020 Jan;(6):26-30 [PMID: 32003163]
  69. J Clin Microbiol. 2009 Dec;47(12):4084-9 [PMID: 19812273]
  70. Biotechnol J. 2013 Jan;8(1):97-109 [PMID: 23281326]
  71. Mol Gen Mikrobiol Virusol. 2015;33(2):20-5 [PMID: 26182663]
  72. Wounds. 2017 Apr;29(4):96-101 [PMID: 28135200]
  73. Arch Intern Med. 2004 Apr 26;164(8):842-50 [PMID: 15111369]
  74. J Bacteriol. 2015 Jul;197(14):2252-64 [PMID: 25917910]
  75. Indian J Crit Care Med. 2015 Jan;19(1):14-20 [PMID: 25624645]
  76. Crit Rev Microbiol. 2017 Aug;43(4):423-439 [PMID: 28033847]
  77. Rev Esc Enferm USP. 2015 Jun;49(3):395-402 [PMID: 26107699]
  78. Urologiia. 2018 Oct;(4):64-71 [PMID: 30761792]
  79. New Microbiol. 2019 Jan;42(1):29-36 [PMID: 30671584]
  80. Int Wound J. 2006 Sep;3(3):225-31 [PMID: 16984578]
  81. Arch Intern Med. 2002 Jan 28;162(2):185-90 [PMID: 11802752]
  82. Antibiotics (Basel). 2020 Dec 23;10(1): [PMID: 33374551]
  83. Antimicrob Agents Chemother. 2017 Feb 23;61(3): [PMID: 28031194]
  84. Curr Opin Urol. 2003 Jan;13(1):63-7 [PMID: 12490818]
  85. Bioelectrochemistry. 2020 Jun;133:107485 [PMID: 32120321]
  86. Microb Pathog. 2016 Jan;90:41-9 [PMID: 26546719]
  87. Front Microbiol. 2019 Mar 20;10:462 [PMID: 30949137]

Grants

  1. МК-3052.2021.1.4/Council for Grants of the President of the Russian Federation
  2. 20-04-00247/Russian Foundation for Basic Research
  3. 0279-2021-0015/The Ministry of Education and Science of the Russian Federation

Word Cloud

Created with Highcharts 10.0.0Longidazabiofilmantimicrobialsbiofilmsbacteriavarioushtreatmentbovinehyaluronidase1destroysdual-speciesformed4speciesdestructionalsoefficacybacterialextremelyresistantimmunesystemleadingdevelopmentchronicinfectionshowfusedcopolymer4-ethylenepiperazineN-oxideN-carboxymethyl-14-ethylenepiperaziniumbromidemono-750unitsenzymeresidualpreserved50-70%initialmassBiomassesfourlatterreduced5-fold24significantobservedFurthermoreappliedcombinationincreasedbiofilm-embeddedalthoughincrease-factorvaluesdependingchosenTakentogetherdataindicatestructurefacilitatingpenetrationwayimprovingloweringrequireddosethuspotentiallyreducingassociatedsideeffectsImprovingEfficacyAntimicrobialsBiofilm-EmbeddedBacteriaUsingBovineHyaluronidaseAzoximerazoximerenzymatic

Similar Articles

Cited By (3)