Epiphytic PGPB AFI1 and AFI2 Improve Wheat Growth and Antioxidant Status under Ni Stress.

Veronika N Pishchik, Polina S Filippova, Galina V Mirskaya, Yuriy V Khomyakov, Vitaliy E Vertebny, Viktoriya I Dubovitskaya, Yuliya V Ostankova, Aleksandr V Semenov, Debasis Chakrabarty, Evgeny V Zuev, Vladimir K Chebotar
Author Information
  1. Veronika N Pishchik: All-Russia Research Institute for Agricultural Microbiology, Podbelskogo hwy, 3, Pushkin, 196608 St. Petersburg, Russia.
  2. Polina S Filippova: St. Petersburg Federal Research Center of the Russian Academy of Sciences, North-West Centre of Interdisciplinary Researches of Problems of Food Maintenance, Podbelskogo hwy, 7, Pushkin, 196608 St. Petersburg, Russia. ORCID
  3. Galina V Mirskaya: Agrophysical Scientific Research Institute, Grazhdansky pr. 14, 195220 St. Petersburg, Russia. ORCID
  4. Yuriy V Khomyakov: Agrophysical Scientific Research Institute, Grazhdansky pr. 14, 195220 St. Petersburg, Russia.
  5. Vitaliy E Vertebny: Agrophysical Scientific Research Institute, Grazhdansky pr. 14, 195220 St. Petersburg, Russia.
  6. Viktoriya I Dubovitskaya: Agrophysical Scientific Research Institute, Grazhdansky pr. 14, 195220 St. Petersburg, Russia.
  7. Yuliya V Ostankova: St. Petersburg Pasteur Institute, Federal Service for the Oversight of Consumer Protection and Welfare, 14, Mira Str., 197101 St. Petersburg, Russia.
  8. Aleksandr V Semenov: Yekaterinburg Research Institute of Viral Infections, The Federal Budgetary Institution of Science "State Scientific Center of Virology and Biotechnology Vector", The Federal Service for Supervision of Consumer Rights Protection and Human Well-Being, 23, Letnyay Str., 620030 Yekaterinburg, Russia.
  9. Debasis Chakrabarty: CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow 22600, India. ORCID
  10. Evgeny V Zuev: Federal Research Center N. I. Vavilov, All-Russian Institute of Plant Genetic Resources, Bolshaya Morskaya Str., 42-44, 190000 St. Petersburg, Russia. ORCID
  11. Vladimir K Chebotar: All-Russia Research Institute for Agricultural Microbiology, Podbelskogo hwy, 3, Pushkin, 196608 St. Petersburg, Russia.

Abstract

The present study demonstrates the Ni toxicity-ameliorating and growth-promoting abilities of two different bacterial isolates when applied to wheat ( L.) as the host plant. Two bacterial strains tolerant to Ni stress were isolated from wheat seeds and selected based on their ability to improve the germination of wheat plants; they were identified as AFI1 and AFI2. The protective effects of these epiphytic bacteria against Ni stress were studied in model experiments with two wheat cultivars: Ni stress-tolerant Leningradskaya 6 and susceptible Chinese spring. When these isolates were used as the inoculants applied to Ni-treated wheat plants, the growth parameters and the levels of photosynthetic pigments of the two wheat cultivars both under normal and Ni-stress conditions were increased, though AFI1 had a more pronounced ameliorative effect on the Ni contents in plant tissues due to its synthesis of siderophores. Over the 10 days of Ni exposure, the plant growth promotion bacteria (PGPB) significantly reduced the lipid peroxidation (LPO), ascorbate peroxidase (APX), superoxide dismutase (SOD) activities and proline content in the leaves of both wheat cultivars. The PGPB also increased peroxidase (POX) activity and the levels of chlorophyll , chlorophyll , and carotenoids in the wheat leaves. It was concluded that AFI1 is an ideal candidate for bioremediation and wheat growth promotion against Ni-induced oxidative stress, as it increases photosynthetic pigment contents, induces the antioxidant defense system, and lowers Ni metal uptake.

Keywords

References

  1. J Exp Bot. 2002 May;53(372):1331-41 [PMID: 11997379]
  2. Plant Physiol. 2003 Aug;132(4):2116-25 [PMID: 12913166]
  3. Int J Syst Evol Microbiol. 2003 May;53(Pt 3):725-730 [PMID: 12807193]
  4. PeerJ. 2021 Sep 29;9:e12230 [PMID: 34703670]
  5. New Phytol. 2002 Nov;156(2):205-215 [PMID: 33873276]
  6. Genet Mol Biol. 2016 Mar;39(1):1-6 [PMID: 27007891]
  7. Anal Biochem. 1978 May;86(1):271-8 [PMID: 655387]
  8. Metallomics. 2016 Mar;8(3):269-85 [PMID: 26837424]
  9. New Phytol. 2009 Nov;184(3):566-580 [PMID: 19691676]
  10. AMB Express. 2019 May 28;9(1):78 [PMID: 31139942]
  11. Environ Sci Pollut Res Int. 2015 Jan;22(1):482-94 [PMID: 25081005]
  12. J Microbiol Methods. 2007 Jul;70(1):127-31 [PMID: 17507108]
  13. Antonie Van Leeuwenhoek. 2014 Dec;106(6):1199-205 [PMID: 25239270]
  14. PeerJ. 2019 Nov 19;7:e8062 [PMID: 31763072]
  15. Plant Cell Environ. 2003 Jun;26(6):857-865 [PMID: 12803613]
  16. Int J Syst Evol Microbiol. 2020 Nov;70(11):5753-5798 [PMID: 33112222]
  17. Plants (Basel). 2019 Dec 18;9(1): [PMID: 31861411]
  18. Anal Biochem. 1971 Nov;44(1):276-87 [PMID: 4943714]
  19. Front Plant Sci. 2018 Apr 06;9:452 [PMID: 29681916]
  20. Environ Sci Pollut Res Int. 2015 May;22(10):7897-905 [PMID: 25655753]
  21. J Basic Microbiol. 2020 Jan;60(1):22-26 [PMID: 31692013]
  22. Anal Biochem. 1976 May 7;72:248-54 [PMID: 942051]
  23. Appl Biochem Biotechnol. 2014 Jan;172(1):549-60 [PMID: 24101562]
  24. RSC Adv. 2019 Feb 19;9(11):6125-6142 [PMID: 35517307]
  25. Can J Microbiol. 2008 Mar;54(3):163-72 [PMID: 18388987]
  26. Trends Plant Sci. 2009 Jan;14(1):43-50 [PMID: 19070530]
  27. Chemosphere. 2019 May;222:399-406 [PMID: 30711729]
  28. Bull Environ Contam Toxicol. 2011 Jan;86(1):1-17 [PMID: 21170705]
  29. Sci Signal. 2014 Jun 03;7(328):ra53 [PMID: 24894996]
  30. J Sci Food Agric. 2010 Apr 30;90(6):965-71 [PMID: 20355136]
  31. Plant Physiol Biochem. 2017 Dec;121:80-88 [PMID: 29096176]
  32. Curr Opin Plant Biol. 2015 Oct;27:52-8 [PMID: 26125499]
  33. Plants (Basel). 2020 Jul 11;9(7): [PMID: 32664464]
  34. J Microbiol. 2013 Feb;51(1):11-7 [PMID: 23456706]
  35. Plants (Basel). 2020 Dec 21;9(12): [PMID: 33371269]
  36. J Environ Manage. 2020 Jan 15;254:109779 [PMID: 31726280]
  37. Biometals. 2007 Feb;20(1):27-36 [PMID: 16752220]
  38. Environ Sci Pollut Res Int. 2017 Sep;24(25):20587-20598 [PMID: 28712076]
  39. Plants (Basel). 2019 Sep 23;8(10): [PMID: 31547575]
  40. Sci Rep. 2021 Aug 3;11(1):15736 [PMID: 34344961]
  41. Front Plant Sci. 2017 Apr 24;8:611 [PMID: 28484479]
  42. 3 Biotech. 2020 Feb;10(2):36 [PMID: 31988830]
  43. Int J Phytoremediation. 2017 Sep 2;19(9):813-824 [PMID: 28699781]
  44. Ecotoxicol Environ Saf. 2012 Dec;86:47-53 [PMID: 23025893]
  45. Ecotoxicol Environ Saf. 2009 Jul;72(5):1354-62 [PMID: 19375798]
  46. J Hazard Mater. 2011 Jan 30;185(2-3):1295-303 [PMID: 21074317]
  47. Annu Rev Plant Biol. 2004;55:373-99 [PMID: 15377225]
  48. Biotechnol Adv. 2011 Mar-Apr;29(2):248-58 [PMID: 21147211]
  49. Chemosphere. 2018 Jan;190:234-242 [PMID: 28992475]
  50. Physiol Plant. 2020 Jan;168(1):27-37 [PMID: 30684269]
  51. Plant Physiol Biochem. 2010 Dec;48(12):909-30 [PMID: 20870416]
  52. Plant Physiol Biochem. 2019 Feb;135:450-459 [PMID: 30497973]
  53. J Environ Biol. 2011 May;32(3):391-4 [PMID: 22167955]
  54. Environ Monit Assess. 2018 Apr 17;190(5):290 [PMID: 29666936]
  55. J Plant Physiol. 2014 Nov 1;171(17):1634-44 [PMID: 25171515]
  56. Braz J Med Biol Res. 2005 Jul;38(7):995-1014 [PMID: 16007271]
  57. Environ Monit Assess. 2013 Jun;185(6):5285-93 [PMID: 23079796]
  58. Int J Syst Evol Microbiol. 2015 Nov;65(11):3959-3964 [PMID: 26268929]
  59. J Bacteriol. 1953 Jul;66(1):24-6 [PMID: 13069461]
  60. Sci Total Environ. 2014 Oct 1;494-495:1-8 [PMID: 25016589]
  61. Microb Cell Fact. 2016 Dec 1;15(1):203 [PMID: 27905924]
  62. PLoS One. 2012;7(12):e52565 [PMID: 23285089]

Grants

  1. N075-15-2020-920/Ministry of Science and Higher Education of the Russian Federation

Word Cloud

Created with Highcharts 10.0.0wheatNiAFI1stressPGPBtwoplantAFI2growthphotosyntheticbacterialisolatesappliedLplantsepiphyticbacterialevelspigmentscultivarsincreasedcontentspromotionlipidperoxidationLPOperoxidaseprolineleaveschlorophyllantioxidantpresentstudydemonstratestoxicity-amelioratinggrowth-promotingabilitiesdifferenthostTwostrainstolerantisolatedseedsselectedbasedabilityimprovegerminationidentifiedprotectiveeffectsstudiedmodelexperimentscultivars:stress-tolerantLeningradskaya6susceptibleChinesespringusedinoculantsNi-treatedparametersnormalNi-stressconditionsthoughpronouncedameliorativeeffecttissuesduesynthesissiderophores10daysexposuresignificantlyreducedascorbateAPXsuperoxidedismutaseSODactivitiescontentalsoPOXactivitycarotenoidsconcludedidealcandidatebioremediationNi-inducedoxidativeincreasespigmentinducesdefensesystemlowersmetaluptakeEpiphyticImproveWheatGrowthAntioxidantStatusStressBacillusmegateriumPaenibacillusnicotianaeenzymesTriticumaestivum

Similar Articles

Cited By