Is prenatal diet associated with the composition of the vaginal microbiome?

Emma M Rosen, Chantel L Martin, Anna Maria Siega-Riz, Nancy Dole, Patricia V Basta, Myrna Serrano, Jennifer Fettweis, Michael Wu, Shan Sun, John M Thorp, Gregory Buck, Anthony A Fodor, Stephanie M Engel
Author Information
  1. Emma M Rosen: Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA. ORCID
  2. Chantel L Martin: Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA. ORCID
  3. Anna Maria Siega-Riz: Departments of Nutrition and Biostatistics and Epidemiology, School of Public Health and Health Sciences, University of Massachusetts Amherst, Amherst, Massachusetts, USA. ORCID
  4. Nancy Dole: Carolina Population Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.
  5. Patricia V Basta: Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.
  6. Myrna Serrano: Department of Microbiology and Immunology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA.
  7. Jennifer Fettweis: Department of Microbiology and Immunology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA.
  8. Michael Wu: Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.
  9. Shan Sun: Department of Bioinformatics, University of North Carolina at Charlotte, Charlotte, North Carolina, USA.
  10. John M Thorp: Department of Obstetrics and Gynecology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.
  11. Gregory Buck: Department of Microbiology and Immunology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA.
  12. Anthony A Fodor: Department of Bioinformatics, University of North Carolina at Charlotte, Charlotte, North Carolina, USA.
  13. Stephanie M Engel: Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.

Abstract

BACKGROUND: The vaginal microbiome has been associated with adverse pregnancy outcomes, but information on the impact of diet on microbiome composition is largely unexamined.
OBJECTIVE: To estimate the association between prenatal diet and vaginal microbiota composition overall and by race.
METHODS: We leveraged a racially diverse prenatal cohort of North Carolina women enrolled between 1995 and 2001 to conduct this analysis using cross-sectional data. Women completed food frequency questionnaires about diet in the previous 3 months and foods were categorised into subgroups: fruits, vegetables, nuts/seeds, whole grains, low-fat dairy, sweetened beverages and red meat. We additionally assessed dietary vitamin D, fibre and yogurt consumption. Stored vaginal swabs collected in mid-pregnancy were sequenced using 16S taxonomic profiling. Women were categorised into three groups based on predominance of species: Lactobacillus iners, Lactobacillus miscellaneous and Bacterial Vaginosis (BV)-associated bacteria. Adjusted Poisson models with robust variance estimators were run to assess the risk of being in a specific vagitype compared to the referent. Race-stratified models (Black/White) were also run.
RESULTS: In this study of 634 women, higher consumption of dairy was associated with increased likelihood of membership in the L. crispatus group compared to the L. iners group in a dose-dependent manner (risk ratio quartile 4 vs. 1: 2.01, 95% confidence interval 1.36, 2.95). Increased intake of fruit, vitamin D, fibre and yogurt was also associated with increased likelihood of membership in L. crispatus compared to L. iners, but only among black women. Statistical heterogeneity was only detected for fibre intake. There were no detected associations between any other food groups or risk of membership in the BV group.
CONCLUSIONS: Higher consumption of low-fat dairy was associated with increased likelihood of membership in a beneficial vagitype, potentially driven by probiotics.

Keywords

References

  1. J Clin Invest. 2011 Dec;121(12):4610-7 [PMID: 22133886]
  2. Nat Med. 2019 Jun;25(6):1012-1021 [PMID: 31142849]
  3. J Acad Nutr Diet. 2018 Jan;118(1):74-100.e11 [PMID: 29111090]
  4. Bioinformatics. 2010 Oct 1;26(19):2460-1 [PMID: 20709691]
  5. BMC Infect Dis. 2005 Jul 06;5:55 [PMID: 16000177]
  6. Semin Perinatol. 2011 Aug;35(4):234-9 [PMID: 21798403]
  7. N Engl J Med. 2000 May 18;342(20):1500-7 [PMID: 10816189]
  8. BMC Med. 2018 Jan 24;16(1):9 [PMID: 29361936]
  9. J Nutr. 2011 Sep;141(9):1698-704 [PMID: 21734062]
  10. J Dairy Sci. 2017 Dec;100(12):9987-10013 [PMID: 29153184]
  11. Microbiome. 2014 Feb 03;2(1):4 [PMID: 24484853]
  12. BMC Genomics. 2012;13 Suppl 8:S17 [PMID: 23282177]
  13. Chem Biodivers. 2012 May;9(5):965-76 [PMID: 22589096]
  14. J Nutr. 2012 Jun;142(6):1009-18 [PMID: 22513989]
  15. BJOG. 2020 Jan;127(2):275-284 [PMID: 30932317]
  16. Clin Nutr. 2020 Oct;39(10):3066-3071 [PMID: 32033845]
  17. Front Microbiol. 2018 Oct 08;9:2181 [PMID: 30349508]
  18. J Nutr. 2007 Sep;137(9):2128-33 [PMID: 17709453]
  19. Women Birth. 2018 Feb;31(1):31-37 [PMID: 28668229]
  20. mSphere. 2020 Jul 8;5(4): [PMID: 32641429]
  21. Annu Rev Microbiol. 2012;66:371-89 [PMID: 22746335]
  22. Fetal Diagn Ther. 2017;42(2):92-98 [PMID: 27744438]
  23. Sociol Health Illn. 2007 Sep;29(6):831-56 [PMID: 17986018]
  24. Am J Clin Nutr. 2004 Dec;80(6 Suppl):1710S-6S [PMID: 15585792]
  25. J Clin Med Res. 2013 Aug;5(4):309-15 [PMID: 23864922]
  26. BMJ. 1994 Jan 29;308(6924):295-8 [PMID: 8124116]
  27. Diabetes Care. 2005 Dec;28(12):2823-31 [PMID: 16306540]
  28. BMC Pregnancy Childbirth. 2018 Jan 8;18(1):14 [PMID: 29310610]
  29. Clin Microbiol Rev. 2016 Apr;29(2):223-38 [PMID: 26864580]
  30. Am J Obstet Gynecol. 2002 Mar;186(3):480-6 [PMID: 11904611]
  31. J Nutr. 2009 Oct;139(10):1956-63 [PMID: 19710161]
  32. Microbiome. 2017 Jan 19;5(1):6 [PMID: 28103952]
  33. Proc Natl Acad Sci U S A. 2011 Mar 15;108 Suppl 1:4680-7 [PMID: 20534435]
  34. NIH Consens State Sci Statements. 2010 Feb 24;27(2):1-27 [PMID: 20186234]
  35. Front Physiol. 2017 Aug 23;8:615 [PMID: 28878691]
  36. Semin Perinatol. 2017 Dec;41(8):511-518 [PMID: 28941962]
  37. Am J Obstet Gynecol. 2016 Nov;215(5):608.e1-608.e7 [PMID: 27342046]
  38. BMJ Open. 2018 Jan 23;8(1):e018021 [PMID: 29362253]
  39. J Pharmacol Pharmacother. 2012 Apr;3(2):118-26 [PMID: 22629085]
  40. J Nutr. 2009 Jun;139(6):1157-61 [PMID: 19357214]
  41. Obstet Gynecol. 2017 Apr;129(4):643-654 [PMID: 28277350]
  42. Transl Res. 2012 Oct;160(4):267-82 [PMID: 22683415]
  43. J Consult Clin Psychol. 1978 Oct;46(5):932-46 [PMID: 701572]
  44. Eur J Clin Nutr. 2014 Apr;68(4):490-5 [PMID: 24424076]
  45. BMC Bioinformatics. 2016 Dec 1;17(1):491 [PMID: 27905885]
  46. Sex Transm Dis. 2014 May;41(5):295-9 [PMID: 24722382]
  47. Paediatr Perinat Epidemiol. 2016 May;30(3):246-55 [PMID: 26848932]
  48. BMJ. 1999 Jul 24;319(7204):220-3 [PMID: 10417083]
  49. Am J Clin Nutr. 2007 May;85(5):1327-34 [PMID: 17490970]
  50. Paediatr Perinat Epidemiol. 1999 Jan;13(1):114-25 [PMID: 9987790]
  51. Microbiology (Reading). 2014 Oct;160(Pt 10):2272-2282 [PMID: 25073854]
  52. J Perinatol. 2019 Jun;39(6):824-836 [PMID: 30858609]
  53. Lancet. 2008 Jan 5;371(9606):75-84 [PMID: 18177778]
  54. Proc Natl Acad Sci U S A. 2015 Sep 1;112(35):11060-5 [PMID: 26283357]
  55. Prev Chronic Dis. 2016 Aug 25;13:E115 [PMID: 27560723]

Grants

  1. R01 DK061981/NIDDK NIH HHS
  2. R01 HD037584/NICHD NIH HHS
  3. P30 ES010126/NIEHS NIH HHS
  4. M01 RR000046/NCRR NIH HHS
  5. R01 HD039373/NICHD NIH HHS
  6. T32 ES007018/NIEHS NIH HHS
  7. R01 MD011504/NIMHD NIH HHS

MeSH Term

Bacteria
Cross-Sectional Studies
Diet
Female
Humans
Microbiota
Pregnancy
Vagina
Vaginosis, Bacterial

Word Cloud

Created with Highcharts 10.0.0associateddietvaginalmembershipLcompositionprenatalwomendairyfibreconsumptionriskcomparedincreasedlikelihoodgroupmicrobiomepregnancymicrobiotausingWomenfoodcategorisedlow-fatvitaminDyogurtgroupsLactobacillusBVmodelsrunvagitypealso crispatus iners2intakedetectedBACKGROUND:adverseoutcomesinformationimpactlargelyunexaminedOBJECTIVE:estimateassociationoverallraceMETHODS:leveragedraciallydiversecohortNorthCarolinaenrolled19952001conductanalysiscross-sectionaldatacompletedfrequencyquestionnairesprevious3 monthsfoodssubgroups:fruitsvegetablesnuts/seedswholegrainssweetenedbeveragesredmeatadditionallyassesseddietaryStoredswabscollectedmid-pregnancysequenced16Staxonomicprofilingthreebasedpredominancespecies:inersmiscellaneousBacterialVaginosis-associatedbacteriaAdjustedPoissonrobustvarianceestimatorsassessspecificreferentRace-stratifiedBlack/WhiteRESULTS:study634higherdose-dependentmannerratioquartile4vs1:0195%confidenceinterval13695IncreasedfruitamongblackStatisticalheterogeneityassociationsCONCLUSIONS:Higherbeneficialpotentiallydrivenprobioticsmicrobiome?bacterialvaginosis

Similar Articles

Cited By