Co-option of immune effectors by the hormonal signalling system triggering metamorphosis in Drosophila melanogaster.

Catarina Nunes, Takashi Koyama, Élio Sucena
Author Information
  1. Catarina Nunes: Evolution and Development Laboratory, Instituto Gulbenkian de Ciência, Oeiras, Portugal. ORCID
  2. Takashi Koyama: Section for Cell and Neurobiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark. ORCID
  3. Élio Sucena: Evolution and Development Laboratory, Instituto Gulbenkian de Ciência, Oeiras, Portugal. ORCID

Abstract

Insect metamorphosis is triggered by the production, secretion and degradation of 20-hydroxyecdysone (ecdysone). In addition to its role in developmental regulation, increasing evidence suggests that ecdysone is involved in innate immunity processes, such as phagocytosis and the induction of antimicrobial peptide (AMP) production. AMP regulation includes systemic responses as well as local responses at surface epithelia that contact with the external environment. At pupariation, Drosophila melanogaster increases dramatically the expression of three AMP genes, drosomycin (drs), drosomycin-like 2 (drsl2) and drosomycin-like 5 (drsl5). We show that the systemic action of drs at pupariation is dependent on ecdysone signalling in the fat body and operates via the ecdysone downstream target, Broad. In parallel, ecdysone also regulates local responses, specifically through the activation of drsl2 expression in the gut. Finally, we confirm the relevance of this ecdysone dependent AMP expression for the control of bacterial load by showing that flies lacking drs expression in the fat body have higher bacterial persistence over metamorphosis. In contrast, local responses may be redundant with the systemic effect of drs since reduction of ecdysone signalling or of drsl2 expression has no measurable negative effect on bacterial load control in the pupa. Together, our data emphasize the importance of the association between ecdysone signalling and immunity using in vivo studies and establish a new role for ecdysone at pupariation, which impacts developmental success by regulating the immune system in a stage-dependent manner. We speculate that this co-option of immune effectors by the hormonal system may constitute an anticipatory mechanism to control bacterial numbers in the pupa, at the core of metamorphosis evolution.

References

  1. Annu Rev Immunol. 2007;25:697-743 [PMID: 17201680]
  2. Bioinformatics. 2011 Apr 1;27(7):1017-8 [PMID: 21330290]
  3. Insect Mol Biol. 2014 Dec;23(6):842-56 [PMID: 25224836]
  4. Philos Trans R Soc Lond B Biol Sci. 2008 Apr 27;363(1496):1539-47 [PMID: 18192180]
  5. Curr Top Dev Biol. 2020;139:375-405 [PMID: 32450967]
  6. Evodevo. 2013 Mar 01;4(1):7 [PMID: 23448685]
  7. Arch Insect Biochem Physiol. 1999 Nov;42(3):198-212 [PMID: 10536048]
  8. Annu Rev Entomol. 2010;55:593-608 [PMID: 19775239]
  9. Nature. 1999 Sep 30;401(6752):447-52 [PMID: 10519548]
  10. Comp Biochem Physiol B Biochem Mol Biol. 2018 Jan;215:19-30 [PMID: 29066397]
  11. J Innate Immun. 2012;4(3):273-83 [PMID: 22237424]
  12. Nucleic Acids Res. 2019 Jan 8;47(D1):D759-D765 [PMID: 30364959]
  13. Development. 2002 May;129(9):2259-69 [PMID: 11959833]
  14. PLoS Biol. 2016 Feb 29;14(2):e1002392 [PMID: 26928023]
  15. EMBO Rep. 2000 Oct;1(4):353-8 [PMID: 11269502]
  16. PLoS One. 2014 Jan 23;9(1):e86995 [PMID: 24466308]
  17. Proc Natl Acad Sci U S A. 2014 Jul 22;111(29):E2967-76 [PMID: 25002478]
  18. EMBO J. 1995 Feb 1;14(3):536-45 [PMID: 7859742]
  19. Annu Rev Immunol. 2002;20:125-63 [PMID: 11861600]
  20. G3 (Bethesda). 2014 Sep 05;4(11):2167-73 [PMID: 25193494]
  21. Insect Biochem Mol Biol. 1997 Oct;27(10):877-86 [PMID: 9474784]
  22. FEBS J. 2021 Jul;288(13):3928-3947 [PMID: 33021015]
  23. Annu Rev Cell Dev Biol. 2002;18:53-80 [PMID: 12142278]
  24. J Exp Biol. 2008 Aug;211(Pt 16):2712-24 [PMID: 18689425]
  25. Immunity. 2000 Nov;13(5):737-48 [PMID: 11114385]
  26. J Invertebr Pathol. 1969 Nov;14(3):365-74 [PMID: 4904970]
  27. Mol Ecol. 2012 Dec;21(24):6134-51 [PMID: 23017151]
  28. Dev Biol. 1988 Jul;128(1):198-206 [PMID: 3384174]
  29. Bioessays. 2009 Nov;31(11):1233-44 [PMID: 19795404]
  30. Curr Opin Insect Sci. 2014 Jul;1:45-51 [PMID: 32846729]
  31. Proc Natl Acad Sci U S A. 1997 Dec 23;94(26):14614-9 [PMID: 9405661]
  32. PLoS Biol. 2018 Jul 5;16(7):e2005710 [PMID: 29975680]
  33. Dev Dyn. 2009 Jun;238(6):1249-70 [PMID: 19253402]
  34. Comp Biochem Physiol B Biochem Mol Biol. 2001 May;129(1):1-15 [PMID: 11337247]
  35. PLoS Pathog. 2013 Oct;9(10):e1003720 [PMID: 24204269]
  36. Development. 2003 Jan;130(2):271-84 [PMID: 12466195]
  37. Curr Biol. 2014 May 19;24(10):1145-52 [PMID: 24794300]
  38. BMC Genomics. 2010 Oct 09;11:549 [PMID: 20932328]
  39. Proc Natl Acad Sci U S A. 2006 May 2;103(18):6925-30 [PMID: 16641104]
  40. Nat Protoc. 2008;3(6):1101-8 [PMID: 18546601]
  41. Philos Trans R Soc Lond B Biol Sci. 2019 Oct 14;374(1783):20190073 [PMID: 31438821]
  42. Parasitol Today. 1994 Apr;10(4):132-9 [PMID: 15275477]
  43. Cell Host Microbe. 2009 Feb 19;5(2):200-11 [PMID: 19218090]
  44. Insect Mol Biol. 2009 Oct;18(5):595-605 [PMID: 19754738]
  45. Trends Microbiol. 2020 May;28(5):372-386 [PMID: 32298615]
  46. Dev Comp Immunol. 2019 May;94:66-72 [PMID: 30716346]
  47. Dev Comp Immunol. 2014 Mar;43(1):10-4 [PMID: 24201132]
  48. Environ Microbiol. 2011 Jul;13(7):1889-900 [PMID: 21631690]
  49. Gene. 2001 Oct 31;278(1-2):177-84 [PMID: 11707335]
  50. Curr Opin Immunol. 2020 Feb;62:22-30 [PMID: 31835066]
  51. Genes Dev. 2003 Jan 1;17(1):115-25 [PMID: 12514104]
  52. J Morphol. 1970 Jul;131(3):301-14 [PMID: 4914576]
  53. Mol Cell Biol. 2007 Jun;27(12):4578-88 [PMID: 17438142]
  54. PeerJ. 2020 May 7;8:e9089 [PMID: 32419987]
  55. Nat Rev Immunol. 2014 Dec;14(12):796-810 [PMID: 25421701]
  56. mSphere. 2020 Apr 15;5(2): [PMID: 32295874]
  57. Dev Comp Immunol. 2017 Sep;74:10-18 [PMID: 28390932]
  58. EMBO J. 2013 May 29;32(11):1626-38 [PMID: 23652443]
  59. Dev Immunol. 1990;1(2):97-104 [PMID: 1967017]
  60. Curr Opin Immunol. 1996 Feb;8(1):8-13 [PMID: 8729440]
  61. PLoS Pathog. 2015 Nov 06;11(11):e1005246 [PMID: 26544881]
  62. Biol Lett. 2018 Feb;14(2): [PMID: 29438055]
  63. Dev Comp Immunol. 2008;32(1):50-60 [PMID: 17537510]
  64. Dev Comp Immunol. 2017 Mar;68:34-45 [PMID: 27871832]
  65. Arch Insect Biochem Physiol. 1991;17(2-3):67-80 [PMID: 1802032]
  66. Nat Rev Immunol. 2010 Aug;10(8):543-53 [PMID: 20651744]
  67. J Innate Immun. 2015;7(1):74-86 [PMID: 25247883]
  68. Insect Biochem Mol Biol. 1996 Feb;26(2):155-60 [PMID: 8882658]

Grants

  1. P40 OD018537/NIH HHS

MeSH Term

Animals
Antimicrobial Peptides
Drosophila Proteins
Drosophila melanogaster
Ecdysone
Ecdysterone
Gene Expression Regulation, Developmental
Intercellular Signaling Peptides and Proteins
Larva
Metamorphosis, Biological
Pupa
Signal Transduction

Chemicals

Antimicrobial Peptides
Drosophila Proteins
Drsl2 protein, Drosophila
Drsl5 protein, Drosophila
Intercellular Signaling Peptides and Proteins
DRS protein, Drosophila
Ecdysone
Ecdysterone

Word Cloud

Created with Highcharts 10.0.0ecdysoneexpressionmetamorphosisAMPresponsesdrssignallingbacterialsystemiclocalpupariationdrsl2controlimmunesystemproductionroledevelopmentalregulationimmunityDrosophilamelanogasterdrosomycin-likedependentfatbodyloadmayeffectpupaeffectorshormonalInsecttriggeredsecretiondegradation20-hydroxyecdysoneadditionincreasingevidencesuggestsinvolvedinnateprocessesphagocytosisinductionantimicrobialpeptideincludeswellsurfaceepitheliacontactexternalenvironmentincreasesdramaticallythreegenesdrosomycin25drsl5showactionoperatesviadownstreamtargetBroadparallelalsoregulatesspecificallyactivationgutFinallyconfirmrelevanceshowingflieslackinghigherpersistencecontrastredundantsincereductionmeasurablenegativeTogetherdataemphasizeimportanceassociationusingvivostudiesestablishnewimpactssuccessregulatingstage-dependentmannerspeculateco-optionconstituteanticipatorymechanismnumberscoreevolutionCo-optiontriggering

Similar Articles

Cited By (6)