Artificial Selection on Microbiomes To Breed Microbiomes That Confer Salt Tolerance to Plants.

Ulrich G Mueller, Thomas E Juenger, Melissa R Kardish, Alexis L Carlson, Kathleen M Burns, Joseph A Edwards, Chad C Smith, Chi-Chun Fang, David L Des Marais
Author Information
  1. Ulrich G Mueller: Department of Integrative Biology, University of Texas at Austin, Austin, Texas, USA.
  2. Thomas E Juenger: Department of Integrative Biology, University of Texas at Austin, Austin, Texas, USA.
  3. Melissa R Kardish: Department of Integrative Biology, University of Texas at Austin, Austin, Texas, USA.
  4. Alexis L Carlson: Department of Integrative Biology, University of Texas at Austin, Austin, Texas, USA.
  5. Kathleen M Burns: Department of Integrative Biology, University of Texas at Austin, Austin, Texas, USA.
  6. Joseph A Edwards: Department of Integrative Biology, University of Texas at Austin, Austin, Texas, USA.
  7. Chad C Smith: Department of Integrative Biology, University of Texas at Austin, Austin, Texas, USA.
  8. Chi-Chun Fang: Department of Integrative Biology, University of Texas at Austin, Austin, Texas, USA.
  9. David L Des Marais: Department of Integrative Biology, University of Texas at Austin, Austin, Texas, USA.

Abstract

We develop a method to artificially select for rhizosphere microbiomes that confer salt tolerance to the model grass grown under sodium salt stress or aluminum salt stress. In a controlled greenhouse environment, we differentially propagated rhizosphere microbiomes between plants of a nonevolving, highly inbred plant population; therefore, only microbiomes evolved in our experiment, but the plants did not evolve in parallel. To maximize microbiome perpetuation when transplanting microbiomes between plants and, thus, maximize response to microbiome selection, we improved earlier methods by (i) controlling microbiome assembly when inoculating seeds at the beginning of each selection cycle; (ii) fractionating microbiomes before transfer between plants to harvest, perpetuate, and select on only bacterial and viral microbiome components; (iii) ramping of salt stress gradually from minor to extreme salt stress with each selection cycle to minimize the chance of overstressing plants; (iv) using two nonselection control treatments (e.g., nonselection microbial enrichment and null inoculation) that permit comparison to the improving fitness benefits that selected microbiomes impart on plants. Unlike previous methods, our selection protocol generated microbiomes that enhance plant fitness after only 1 to 3 rounds of microbiome selection. After nine rounds of microbiome selection, the effect of microbiomes selected to confer tolerance to aluminum salt stress was nonspecific (these artificially selected microbiomes equally ameliorate sodium and aluminum salt stresses), but the effect of microbiomes selected to confer tolerance to sodium salt stress was specific (these artificially selected microbiomes do not confer tolerance to aluminum salt stress). Plants with artificially selected microbiomes had 55 to 205% greater seed production than plants with unselected control microbiomes. We developed an experimental protocol that improves earlier methods of artificial selection on microbiomes and then tested the efficacy of our protocol to breed root-associated bacterial microbiomes that confer salt tolerance to a plant. salt stress limits growth and seed production of crop plants, and artificially selected microbiomes conferring salt tolerance may ultimately help improve agricultural productivity. Unlike previous experiments of microbiome selection, our selection protocol generated microbiomes that enhance plant productivity after only 1 to 3 rounds of artificial selection on root-associated microbiomes, increasing seed production under extreme salt stress by 55 to 205% after nine rounds of microbiome selection. Although we artificially selected microbiomes under controlled greenhouse conditions that differ from outdoor conditions, increasing seed production by 55 to 205% under extreme salt stress is a remarkable enhancement of plant productivity compared to traditional plant breeding. We describe a series of additional experimental protocols that will advance insights into key parameters that determine efficacy and response to microbiome selection.

Keywords

References

  1. Front Microbiol. 2018 Jul 11;9:1516 [PMID: 30050510]
  2. Nat Commun. 2021 Aug 26;12(1):5141 [PMID: 34446709]
  3. PLoS One. 2019 Dec 4;14(12):e0225933 [PMID: 31800619]
  4. ISME J. 2015 Mar 17;9(4):980-9 [PMID: 25350154]
  5. Front Microbiol. 2016 Dec 06;7:1967 [PMID: 27999571]
  6. PeerJ. 2020 Jul 1;8:e9350 [PMID: 32676220]
  7. mSystems. 2021 Dec 21;6(6):e0112521 [PMID: 34846165]
  8. Microbiome. 2017 Sep 25;5(1):127 [PMID: 28946894]
  9. Nature. 2017 Aug 2;548(7665):43-51 [PMID: 28770836]
  10. Philos Trans R Soc Lond B Biol Sci. 2020 May 11;375(1798):20190252 [PMID: 32200752]
  11. Nat Rev Microbiol. 2019 Dec;17(12):725-741 [PMID: 31548653]
  12. Science. 2015 Nov 6;350(6261):663-6 [PMID: 26542567]
  13. PLoS Biol. 2018 Feb 23;16(2):e2003862 [PMID: 29474469]
  14. J Exp Bot. 2015 Apr;66(8):2167-75 [PMID: 25908654]
  15. PLoS Biol. 2019 Aug 30;17(8):e3000356 [PMID: 31469824]
  16. Front Microbiol. 2014 Feb 24;5:46 [PMID: 24605109]
  17. Trends Microbiol. 2015 Oct;23(10):606-617 [PMID: 26422463]
  18. Proc Natl Acad Sci U S A. 2000 Aug 1;97(16):9110-4 [PMID: 10890915]
  19. Proc Natl Acad Sci U S A. 2007 May 22;104(21):8918-23 [PMID: 17517642]
  20. Trends Ecol Evol. 2020 May;35(5):426-439 [PMID: 32294424]
  21. Virology. 2015 May;479-480:271-7 [PMID: 25858141]
  22. Trends Plant Sci. 2018 Jan;23(1):25-41 [PMID: 29050989]
  23. Ecol Lett. 2015 Oct;18(10):1040-8 [PMID: 26259498]
  24. Proc Natl Acad Sci U S A. 2020 Jan 14;117(2):1148-1159 [PMID: 31806755]
  25. Q Rev Biol. 2004 Jun;79(2):135-60 [PMID: 15232949]
  26. PLoS Biol. 2019 Jun 25;17(6):e3000295 [PMID: 31237866]
  27. Annu Rev Biophys. 2021 May 6;50:323-341 [PMID: 33646814]
  28. Plant Mol Biol. 2016 Apr;90(6):575-87 [PMID: 26729479]
  29. Evolution. 2020 Oct;74(10):2392-2403 [PMID: 32888315]
  30. Plant Physiol. 2011 Sep;157(1):3-13 [PMID: 21771916]
  31. Front Microbiol. 2021 Apr 09;12:657467 [PMID: 33897672]
  32. Annu Rev Plant Biol. 2006;57:233-66 [PMID: 16669762]
  33. Annu Rev Plant Biol. 2013;64:807-38 [PMID: 23373698]
  34. PLoS Biol. 2021 Feb 19;19(2):e3001116 [PMID: 33606675]
  35. Ecol Lett. 2012 Nov;15(11):1300-1307 [PMID: 22913725]
  36. Bioscience. 2011 May;61(5):398-406 [PMID: 21731083]
  37. mSystems. 2016 Mar 29;1(2): [PMID: 27822520]
  38. BMC Microbiol. 2021 Apr 9;21(1):108 [PMID: 33836662]
  39. Science. 2018 Aug 3;361(6401):469-474 [PMID: 30072533]
  40. Proc Natl Acad Sci U S A. 2013 Apr 16;110(16):6548-53 [PMID: 23576752]
  41. Nat Ecol Evol. 2021 Jul;5(7):1011-1023 [PMID: 33986540]

Grants

  1. 11186/MEXT | Japan Society for the Promotion of Science (JSPS)
  2. DEB1354666/National Science Foundation (NSF)
  3. DEB1911443/National Science Foundation (NSF)
  4. NIFA-2011-67012-30663/U.S. Department of Agriculture (USDA)

Word Cloud

Created with Highcharts 10.0.0microbiomessaltselectionmicrobiomestressplantsselectedtoleranceartificiallyplantconferaluminumprotocolroundsseedproductionrhizospheresodiummethodsextreme55205%experimentalproductivityselectcontrolledgreenhousemaximizeresponseearliercyclebacterialnonselectioncontrolfitnessUnlikepreviousgeneratedenhance13nineeffectPlantsartificialefficacyroot-associatedSaltincreasingconditionsbreedingMicrobiomesdevelopmethodmodelgrassgrownenvironmentdifferentiallypropagatednonevolvinghighlyinbredpopulationthereforeevolvedexperimentevolveparallelperpetuationtransplantingthusimprovedcontrollingassemblyinoculatingseedsbeginningiifractionatingtransferharvestperpetuateviralcomponentsiiirampinggraduallyminorminimizechanceoverstressingivusingtwotreatmentsegmicrobialenrichmentnullinoculationpermitcomparisonimprovingbenefitsimpartnonspecificequallyamelioratestressesspecificgreaterunselecteddevelopedimprovestestedbreedlimitsgrowthcropconferringmayultimatelyhelpimproveagriculturalexperimentsAlthoughdifferoutdoorremarkableenhancementcomparedtraditionaldescribeseriesadditionalprotocolswilladvanceinsightskeyparametersdetermineArtificialSelectionBreedConferToleranceBrachypodiumdistachyonbeneficialmicrobesevolutionhost-mediatedindirect

Similar Articles

Cited By (27)