Maternal-Offspring Interactions: Reciprocally Coevolving Social Environments.

Michael J Wade
Author Information
  1. Michael J Wade: Department of Biology, Indiana University, Bloomington, IN 47405, USA.

Abstract

Maternal-zygotic co-evolution is one of the most common examples of indirect genetic effects. I investigate how maternal-zygotic gene interactions affect rates of evolution and adaptation. Using comparably parameterized population genetic models, I compare evolution to an abiotic environment with genotype-by-environment interaction (G × E) to evolution to a maternal environment with offspring genotype-by-maternal environment interaction (G × Gmaternal). There are strong parallels between the 2 models in the components of fitness variance but they differ in their rates of evolution measured in terms of ∆p, gene frequency change, or of ∆W, change in mean fitness. The Price Equation is used to partition ∆W into 2 components, one owing to the genetic variance in fitness by natural selection and a second owing to change in environment. Adaptive evolution is faster in the 2-locus model with G × Gmaternal with free recombination, than it is in the 1-locus model with G × E, because in the former the maternal genetic environment coevolves with the zygotic phenotype adapting to it. I discuss the relevance of these findings for the evolution of genes with indirect genetic effects.

Keywords

References

  1. J Evol Biol. 2012 Jun;25(6):1002-19 [PMID: 22487312]
  2. Trends Ecol Evol. 1998 Feb 1;13(2):64-9 [PMID: 21238202]
  3. Evol Dev. 2008 Sep-Oct;10(5):583-90 [PMID: 18803776]
  4. J Hered. 2022 Feb 17;113(1):48-53 [PMID: 34850026]
  5. Nature. 2012 Oct 25;490(7421):535-8 [PMID: 23064225]
  6. Trends Ecol Evol. 1997 Jul;12(7):282-6 [PMID: 21238076]
  7. PLoS Genet. 2008 Feb 29;4(2):e1000008 [PMID: 18454194]
  8. Int J Epidemiol. 2015 Aug;44(4):1117-23 [PMID: 25855719]
  9. Trends Genet. 2020 Sep;36(9):640-649 [PMID: 32713599]
  10. Evolution. 2014 Oct;68(10):3039-46 [PMID: 24916074]
  11. Evolution. 2016 Apr;70(4):827-39 [PMID: 26969266]
  12. Mol Phylogenet Evol. 2016 Sep;102:20-9 [PMID: 27233441]
  13. Curr Biol. 2011 Aug 23;21(16):1366-72 [PMID: 21835622]
  14. J Evol Biol. 2020 Jan;33(1):127-137 [PMID: 31549475]
  15. New Phytol. 2005 Apr;166(1):129-39 [PMID: 15760357]
  16. Genetics. 2010 Feb;184(2):557-70 [PMID: 19966065]
  17. Am Nat. 2004 Oct;164(4):E83-9 [PMID: 15459886]
  18. Evolution. 2009 Jul;63(7):1685-96 [PMID: 19245396]
  19. Philos Trans R Soc Lond B Biol Sci. 2010 Apr 27;365(1544):1241-4 [PMID: 20308099]
  20. Genet Sel Evol. 2018 Jul 23;50(1):38 [PMID: 30037326]
  21. PLoS Genet. 2005 Nov;1(5):e57 [PMID: 16299585]
  22. Genetica. 2007 Jan;129(1):37-43 [PMID: 16955333]

MeSH Term

Biological Evolution
Epistasis, Genetic
Genotype
Models, Genetic
Phenotype
Selection, Genetic
Social Environment

Word Cloud

Created with Highcharts 10.0.0geneticevolutionenvironmentG×indirecteffectsinteractionfitnesschangeonegeneratesmodelsgenotype-by-environmentEmaternalGmaternal2componentsvariance∆WPriceEquationowingmodelMaternal-zygoticco-evolutioncommonexamplesinvestigatematernal-zygoticinteractionsaffectadaptationUsingcomparablyparameterizedpopulationcompareabioticoffspringgenotype-by-maternalstrongparallelsdiffermeasuredterms∆pfrequencymeanusedpartitionnaturalselectionsecondAdaptivefaster2-locusfreerecombination1-locusformercoevolveszygoticphenotypeadaptingdiscussrelevancefindingsgenesMaternal-OffspringInteractions:ReciprocallyCoevolvingSocialEnvironmentsepistasisinbreeding

Similar Articles

Cited By