Additively manufactured nano-mechanical energy harvesting systems: advancements, potential applications, challenges and future perspectives.

Ammar Ahmed, Ali Azam, Yanen Wang, Zutao Zhang, Ning Li, Changyuan Jia, Ray Tahir Mushtaq, Mudassar Rehman, Thierno Gueye, Muhammad Bilal Shahid, Basit Ali Wajid
Author Information
  1. Ammar Ahmed: Department of Industry Engineering, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China.
  2. Ali Azam: School of Mechanical Engineering, Southwest Jiaotong University, Chengdu, 610031, People's Republic of China.
  3. Yanen Wang: Department of Industry Engineering, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China. wangyanen@126.com.
  4. Zutao Zhang: School of Mechanical Engineering, Southwest Jiaotong University, Chengdu, 610031, People's Republic of China.
  5. Ning Li: Graduate School of Tangshan, Southwest Jiaotong University, Tangshan, 063008, People's Republic of China.
  6. Changyuan Jia: School of Mechanical Engineering, Southwest Jiaotong University, Chengdu, 610031, People's Republic of China.
  7. Ray Tahir Mushtaq: Department of Industry Engineering, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China.
  8. Mudassar Rehman: Department of Industry Engineering, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China.
  9. Thierno Gueye: Department of Industry Engineering, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China.
  10. Muhammad Bilal Shahid: School of Electrical Engineering, Southwest Jiaotong University, Chengdu, 610031, People's Republic of China.
  11. Basit Ali Wajid: School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, People's Republic of China.

Abstract

Additively manufactured nano-MEH systems are widely used to harvest energy from renewable and sustainable energy sources such as wind, ocean, sunlight, raindrops, and ambient vibrations. A comprehensive study focusing on in-depth technology evolution, applications, problems, and future trends of specifically 3D printed nano-MEH systems with an energy point of view is rarely conducted. Therefore, this paper looks into the state-of-the-art technologies, energy harvesting sources/methods, performance, implementations, emerging applications, potential challenges, and future perspectives of additively manufactured nano-mechanical energy harvesting (3DP-NMEH) systems. The prevailing challenges concerning renewable energy harvesting capacities, optimal energy scavenging, power management, material functionalization, sustainable prototyping strategies, new materials, commercialization, and hybridization are discussed. A novel solution is proposed for renewable energy generation and medicinal purposes based on the sustainable utilization of recyclable municipal and medical waste generated during the COVID-19 pandemic. Finally, recommendations for future research are presented concerning the cutting-edge issues hurdling the optimal exploitation of renewable energy resources through NMEHs. China and the USA are the most significant leading forces in enhancing 3DP-NMEH technology, with more than 75% contributions collectively. The reported output energy capacities of additively manufactured nano-MEH systems were 0.5-32 mW, 0.0002-45.6 mW, and 0.3-4.67 mW for electromagnetic, piezoelectric, and triboelectric nanogenerators, respectively. The optimal strategies and techniques to enhance these energy capacities are compiled in this paper.

Keywords

References

  1. Adv Mater. 2015 Apr 8;27(14):2367-76 [PMID: 25722118]
  2. Nano Converg. 2016;3(1):4 [PMID: 28191414]
  3. ACS Nano. 2013 Aug 27;7(8):7342-51 [PMID: 23883397]
  4. Sci Rep. 2016 Apr 26;6:24946 [PMID: 27112530]
  5. Sci Rep. 2017 Jul 28;7(1):6759 [PMID: 28754916]
  6. Nano Lett. 2013 May 8;13(5):2226-33 [PMID: 23581714]
  7. Sensors (Basel). 2020 Nov 26;20(23): [PMID: 33255882]
  8. Adv Mater. 2016 Dec;28(46):10267-10274 [PMID: 27690188]
  9. Sensors (Basel). 2018 May 25;18(6): [PMID: 29799495]
  10. Renew Sustain Energy Rev. 2021 Nov;151:111570 [PMID: 36570067]
  11. Nano Converg. 2019 Oct 22;6(1):33 [PMID: 31637535]
  12. Nano Converg. 2017;4(1):26 [PMID: 28989856]
  13. Renew Sustain Energy Rev. 2021 Apr;139:110693 [PMID: 36567792]
  14. ACS Appl Mater Interfaces. 2018 Jan 31;10(4):3652-3659 [PMID: 29313665]
  15. J Manuf Syst. 2021 Jul;60:709-733 [PMID: 35068653]
  16. Nano Converg. 2014;1(1):10 [PMID: 28191393]
  17. Nano Converg. 2020 Mar 3;7(1):8 [PMID: 32124134]
  18. ACS Nano. 2017 Feb 28;11(2):1728-1735 [PMID: 28094509]
  19. Nano Converg. 2021 Sep 2;8(1):25 [PMID: 34473311]
  20. Nat Commun. 2019 May 14;10(1):2158 [PMID: 31089129]
  21. Sci Robot. 2020 Apr 22;5(41): [PMID: 32607455]
  22. Nano Converg. 2016;3(1):21 [PMID: 28191431]
  23. Nano Converg. 2020 Jul 6;7(1):23 [PMID: 32632474]
  24. Sensors (Basel). 2015 Feb 27;15(3):5020-31 [PMID: 25734649]
  25. Nano Lett. 2012 Sep 12;12(9):4960-5 [PMID: 22889363]
  26. Nano Converg. 2016;3(1):8 [PMID: 28191418]
  27. Chem Soc Rev. 2016 Oct 10;45(20):5455-5473 [PMID: 27398416]
  28. Nano Converg. 2018 Nov 2;5(1):30 [PMID: 30467658]
  29. Renew Sustain Energy Rev. 2020 Jul;127:109883 [PMID: 34234614]
  30. ACS Appl Mater Interfaces. 2021 Sep 8;13(35):41723-41734 [PMID: 34431292]
  31. ACS Nano. 2017 Dec 26;11(12):12764-12771 [PMID: 29211958]
  32. Nano Converg. 2020 Mar 10;7(1):9 [PMID: 32152826]
  33. Nano Converg. 2016;3(1):2 [PMID: 28191412]
  34. Nano Converg. 2016;3(1):12 [PMID: 28191422]
  35. Nano Converg. 2019 Sep 9;6(1):28 [PMID: 31495907]
  36. ACS Nano. 2014 Oct 28;8(10):9799-806 [PMID: 25046646]
  37. Nano Converg. 2019 Aug 1;6(1):25 [PMID: 31367883]
  38. ACS Nano. 2018 May 22;12(5):4280-4285 [PMID: 29620875]
  39. Nat Commun. 2016 Sep 28;7:12744 [PMID: 27677971]
  40. Nano Converg. 2016;3(1):27 [PMID: 28191437]
  41. Nano Converg. 2020 Oct 9;7(1):33 [PMID: 33034776]
  42. Nat Commun. 2018 May 4;9(1):1804 [PMID: 29728600]
  43. Nat Commun. 2018 Oct 15;9(1):4280 [PMID: 30323200]
  44. Adv Mater. 2014 May;26(18):2818-24 [PMID: 24449058]
  45. Nano Converg. 2017;4(1):21 [PMID: 28835877]
  46. Nat Mater. 2019 Mar;18(3):234-241 [PMID: 30664695]
  47. Nano Converg. 2017;4(1):29 [PMID: 29152447]
  48. Nano Converg. 2014;1(1):15 [PMID: 28936384]
  49. ACS Nano. 2016 Feb 23;10(2):1780-7 [PMID: 26738695]
  50. ACS Nano. 2015;9(4):3521-9 [PMID: 25687592]
  51. Nano Converg. 2017;4(1):37 [PMID: 29299399]
  52. Faraday Discuss. 2014;176:447-58 [PMID: 25406406]
  53. Nano Converg. 2018 Aug 8;5(1):22 [PMID: 30148043]
  54. Nano Converg. 2019 Apr 2;6(1):10 [PMID: 30937630]
  55. Micromachines (Basel). 2020 Jul 23;11(8): [PMID: 32717887]
  56. ACS Nano. 2015 Apr 28;9(4):4236-43 [PMID: 25790372]
  57. Adv Mater. 2014 Sep 3;26(33):5851-6 [PMID: 25043590]

Grants

  1. 2021YFSY0059/The Science and Technology Projects of Sichuan
  2. 2019QY(Y)0502/The National Key Research and Development Program of China
  3. 2020ZDLSF04-07/The Key Research and Development Program of Shaanxi Province
  4. 51905438/The National Natural Science Foundation of China
  5. 31020190502009/The Fundamental Research Funds for the Central Universities
  6. 17SF0002/The Innovation Platform of Bio fabrication
  7. 2020M673471/China Postdoctoral Science Foundation
  8. 51975490/National Natural Foundation of China

Word Cloud

Created with Highcharts 10.0.0energyharvestingmanufacturedsystemsrenewablefuturenano-MEHsustainableapplicationschallengescapacitiesoptimal0mWAdditivelytechnology3Dpaperpotentialperspectivesadditivelynano-mechanical3DP-NMEHconcerningstrategieswidelyusedharvestsourceswindoceansunlightraindropsambientvibrationscomprehensivestudyfocusingin-depthevolutionproblemstrendsspecificallyprintedpointviewrarelyconductedThereforelooksstate-of-the-arttechnologiessources/methodsperformanceimplementationsemergingprevailingscavengingpowermanagementmaterialfunctionalizationprototypingnewmaterialscommercializationhybridizationdiscussednovelsolutionproposedgenerationmedicinalpurposesbasedutilizationrecyclablemunicipalmedicalwastegeneratedCOVID-19pandemicFinallyrecommendationsresearchpresentedcutting-edgeissueshurdlingexploitationresourcesNMEHsChinaUSAsignificantleadingforcesenhancing75%contributionscollectivelyreportedoutput5-320002-4563-467electromagneticpiezoelectrictriboelectricnanogeneratorsrespectivelytechniquesenhancecompiledsystems:advancementsprintingChallengesEnergyNano-energyRenewableSustainability

Similar Articles

Cited By