Kinase-dead mutation: A novel strategy for improving soybean resistance to soybean cyst nematode Heterodera glycines.

Sarbottam Piya, Tracy Hawk, Bhoomi Patel, Logan Baldwin, John H Rice, C Neal Stewart, Tarek Hewezi
Author Information
  1. Sarbottam Piya: Department of Plant Sciences, University of Tennessee, Knoxville, Tennessee, USA.
  2. Tracy Hawk: Department of Plant Sciences, University of Tennessee, Knoxville, Tennessee, USA.
  3. Bhoomi Patel: Department of Plant Sciences, University of Tennessee, Knoxville, Tennessee, USA.
  4. Logan Baldwin: Department of Plant Sciences, University of Tennessee, Knoxville, Tennessee, USA.
  5. John H Rice: Department of Plant Sciences, University of Tennessee, Knoxville, Tennessee, USA.
  6. C Neal Stewart: Department of Plant Sciences, University of Tennessee, Knoxville, Tennessee, USA.
  7. Tarek Hewezi: Department of Plant Sciences, University of Tennessee, Knoxville, Tennessee, USA. ORCID

Abstract

Protein kinases phosphorylate proteins for functional changes and are involved in nearly all cellular processes, thereby regulating almost all aspects of plant growth and development, and responses to biotic and abiotic stresses. We generated two independent co-expression networks of soybean genes using control and stress response gene expression data and identified 392 differentially highly interconnected kinase hub genes among the two networks. Of these 392 kinases, 90 genes were identified as "syncytium highly connected hubs", potentially essential for activating kinase signalling pathways in the nematode feeding site. Overexpression of wild-type coding sequences of five syncytium highly connected kinase hub genes using transgenic soybean hairy roots enhanced plant susceptibility to soybean cyst nematode (SCN; Heterodera glycines) Hg Type 0 (race 3). In contrast, overexpression of kinase-dead variants of these five syncytium kinase hub genes significantly enhanced soybean resistance to SCN. Additionally, three of the five tested kinase hub genes enhanced soybean resistance to SCN Hg Type 1.2.5.7 (race 2), highlighting the potential of the kinase-dead approach to generate effective and durable resistance against a wide range of SCN Hg types. Subcellular localization analysis revealed that kinase-dead mutations do not alter protein cellular localization, confirming the structure-function of the kinase-inactive variants in producing loss-of-function phenotypes causing significant decrease in nematode susceptibility. Because many protein kinases are highly conserved and are involved in plant responses to various biotic and abiotic stresses, our approach of identifying kinase hub genes and their inactivation using kinase-dead mutation could be translated for biotic and abiotic stress tolerance.

Keywords

References

  1. Plant Physiol. 2003 Jun;132(2):530-43 [PMID: 12805585]
  2. Philos Trans R Soc Lond B Biol Sci. 2012 Sep 19;367(1602):2619-39 [PMID: 22889912]
  3. Nucleic Acids Res. 1989 Mar 25;17(6):2362 [PMID: 2468132]
  4. Cell Mol Life Sci. 2012 Oct;69(19):3259-67 [PMID: 22847330]
  5. Front Plant Sci. 2017 Nov 29;8:2028 [PMID: 29238354]
  6. Plant Physiol. 2011 Apr;155(4):1960-75 [PMID: 21335526]
  7. Mol Biol Evol. 2004 Nov;21(11):2058-70 [PMID: 15282333]
  8. FASEB J. 1995 May;9(8):576-96 [PMID: 7768349]
  9. Bioinformatics. 2015 Jan 15;31(2):166-9 [PMID: 25260700]
  10. Cell Host Microbe. 2012 Oct 18;12(4):484-95 [PMID: 23084917]
  11. Commun Biol. 2020 May 8;3(1):224 [PMID: 32385340]
  12. Plant Mol Biol. 2009 Dec;71(6):525-67 [PMID: 19787434]
  13. J Exp Bot. 2015 Apr;66(7):1919-34 [PMID: 25614662]
  14. PLoS Pathog. 2017 Apr 13;13(4):e1006284 [PMID: 28406987]
  15. PLoS Genet. 2015 Jul 21;11(7):e1005373 [PMID: 26197346]
  16. Sci Rep. 2021 Apr 12;11(1):7967 [PMID: 33846373]
  17. Trends Microbiol. 2020 Jul;28(7):523-535 [PMID: 32544439]
  18. Mol Plant. 2012 Jan;5(1):143-53 [PMID: 21765177]
  19. PLoS One. 2016 Jul 21;11(7):e0159338 [PMID: 27441552]
  20. Front Plant Sci. 2017 Jun 21;8:1087 [PMID: 28680436]
  21. Mol Plant Microbe Interact. 2013 Jan;26(1):9-16 [PMID: 22809272]
  22. Plant Physiol Biochem. 2010 Feb-Mar;48(2-3):176-93 [PMID: 20138530]
  23. Front Plant Sci. 2019 Aug 02;10:996 [PMID: 31428116]
  24. Plant J. 2007 May;50(3):488-99 [PMID: 17419849]
  25. Nat Biotechnol. 2014 Sep;32(9):915-925 [PMID: 25150835]
  26. Curr Opin Plant Biol. 2011 Oct;14(5):519-29 [PMID: 21704551]
  27. Bioinformatics. 2014 Aug 1;30(15):2114-20 [PMID: 24695404]
  28. Genome Biol. 2014;15(12):550 [PMID: 25516281]
  29. Nucleic Acids Res. 2011 Jul;39(Web Server issue):W316-22 [PMID: 21715386]
  30. Plant J. 2010 Oct;64(2):230-42 [PMID: 20735771]
  31. Plant Cell. 2015 Mar;27(3):891-907 [PMID: 25715285]
  32. J Plant Physiol. 2011 Oct 15;168(15):1784-94 [PMID: 21742407]
  33. Plant Physiol. 2009 Jun;150(2):535-46 [PMID: 19357200]
  34. Funct Integr Genomics. 2004 Jul;4(3):163-87 [PMID: 14740254]
  35. Mol Plant Microbe Interact. 2009 Feb;22(2):115-22 [PMID: 19132864]
  36. Plant Cell. 2014 Dec;26(12):4617-35 [PMID: 25490918]
  37. Plant Physiol. 2008 Oct;148(2):993-1003 [PMID: 18715958]
  38. FEBS Lett. 2018 Jul;592(14):2395-2402 [PMID: 29904923]
  39. Brief Bioinform. 2018 Jul 20;19(4):575-592 [PMID: 28077403]
  40. Biochem J. 2008 Jul 15;413(2):217-26 [PMID: 18570633]
  41. BMC Plant Biol. 2010 May 25;10:95 [PMID: 20500828]
  42. Front Plant Sci. 2014 Mar 19;5:89 [PMID: 24678316]
  43. Mol Plant Microbe Interact. 2007 May;20(5):510-25 [PMID: 17506329]
  44. BMC Genomics. 2009 Jun 29;10:288 [PMID: 19563678]
  45. New Phytol. 2016 Nov;212(3):637-645 [PMID: 27400831]
  46. Plant Cell. 2020 Apr;32(4):1063-1080 [PMID: 32034035]
  47. Front Plant Sci. 2020 Apr 03;11:377 [PMID: 32308664]
  48. Cell. 2011 Mar 18;144(6):986-98 [PMID: 21414488]
  49. Planta. 2007 Nov;226(6):1389-409 [PMID: 17668236]
  50. Genome Res. 2003 Nov;13(11):2498-504 [PMID: 14597658]
  51. BMC Bioinformatics. 2005 Sep 14;6:227 [PMID: 16162296]
  52. Bioinformatics. 2013 Mar 15;29(6):717-24 [PMID: 23376351]
  53. Annu Rev Plant Biol. 2010;61:621-49 [PMID: 20441529]
  54. Nucleic Acids Res. 2011 Jan;39(Database issue):D19-21 [PMID: 21062823]
  55. Plant Mol Biol. 2003 Sep;53(1-2):61-74 [PMID: 14756307]
  56. Bioinformatics. 2009 May 1;25(9):1105-11 [PMID: 19289445]
  57. Biochem Biophys Res Commun. 2014 Mar 7;445(2):457-62 [PMID: 24530916]
  58. Plant Physiol. 2017 Jan;173(1):771-787 [PMID: 27852951]
  59. Sci Rep. 2018 Jul 18;8(1):10885 [PMID: 30022075]
  60. Mol Plant Pathol. 2022 Mar;23(3):417-430 [PMID: 34851539]
  61. BMC Plant Biol. 2014 Nov 25;14:300 [PMID: 25421055]
  62. Mol Plant. 2008 Sep;1(5):732-50 [PMID: 19825577]
  63. Curr Opin Plant Biol. 2008 Aug;11(4):396-403 [PMID: 18657470]
  64. Plant Cell. 2004 May;16(5):1220-34 [PMID: 15105442]
  65. Theor Appl Genet. 2011 Nov;123(7):1193-206 [PMID: 21800143]
  66. BMC Plant Biol. 2013 Jul 01;13:94 [PMID: 23815750]
  67. BMC Bioinformatics. 2008 Dec 29;9:559 [PMID: 19114008]
  68. Genom Data. 2017 Aug 09;14:36-39 [PMID: 28856099]
  69. Trends Genet. 2010 Jul;26(7):326-33 [PMID: 20570387]
  70. Mol Plant Microbe Interact. 2019 Jun;32(6):760-769 [PMID: 30676230]
  71. Nucleic Acids Res. 2015 Jan;43(Database issue):D1124-32 [PMID: 25361971]
  72. Front Plant Sci. 2012 Nov 16;3:250 [PMID: 23162562]
  73. Plant J. 2019 Oct;100(1):187-198 [PMID: 31148337]
  74. Nucleic Acids Res. 2007 Jul;35(Web Server issue):W585-7 [PMID: 17517783]
  75. Proc Natl Acad Sci U S A. 2018 Feb 20;115(8):E1906-E1915 [PMID: 29432171]
  76. Science. 2003 Oct 10;302(5643):249-55 [PMID: 12934013]
  77. Bioinformatics. 2015 Jul 1;31(13):2123-30 [PMID: 25717192]
  78. Plant Physiol. 2010 Feb;152(2):968-84 [PMID: 19965964]
  79. Plant J. 2011 Apr;66(1):117-27 [PMID: 21443627]
  80. Curr Opin Plant Biol. 2006 Oct;9(5):460-9 [PMID: 16877029]
  81. Plant Physiol. 2009 May;150(1):12-26 [PMID: 19321712]
  82. Structure. 2011 Dec 7;19(12):1807-15 [PMID: 22153503]
  83. New Phytol. 2020 Jul;227(1):168-184 [PMID: 32112408]
  84. Nucleic Acids Res. 2017 Jul 3;45(W1):W122-W129 [PMID: 28472432]

MeSH Term

Animals
Cysts
Mercury
Mutation
Plant Diseases
Protein Kinases
Glycine max
Tylenchoidea

Chemicals

Protein Kinases
Mercury

Word Cloud

Created with Highcharts 10.0.0soybeangeneskinasehubkinase-deadkinaseshighlynematodeSCNresistanceplantbioticabioticusingfiveenhancedHeteroderaglycinesHgproteininvolvedcellularresponsesstressestwoco-expressionnetworksstressgeneidentified392connectedsyncytiumsusceptibilitycystTyperacevariants2approachlocalizationProteinphosphorylateproteinsfunctionalchangesnearlyprocessestherebyregulatingalmostaspectsgrowthdevelopmentgeneratedindependentcontrolresponseexpressiondatadifferentiallyinterconnectedamong90"syncytiumhubs"potentiallyessentialactivatingsignallingpathwaysfeedingsiteOverexpressionwild-typecodingsequencestransgenichairyroots03contrastoverexpressionsignificantlyAdditionallythreetested157highlightingpotentialgenerateeffectivedurablewiderangetypesSubcellularanalysisrevealedmutationsalterconfirmingstructure-functionkinase-inactiveproducingloss-of-functionphenotypescausingsignificantdecreasemanyconservedvariousidentifyinginactivationmutationtranslatedtoleranceKinase-deadmutation:novelstrategyimprovingnetwork

Similar Articles

Cited By (10)