The long non-coding RNA NRON promotes the development of cardiac hypertrophy in the murine heart.

Jeannine Hoepfner, Julia Leonardy, Dongchao Lu, Kevin Schmidt, Hannah J Hunkler, Sinje Biß, Ariana Foinquinos, Ke Xiao, Kumarswamy Regalla, Deepak Ramanujam, Stefan Engelhardt, Christian Bär, Thomas Thum
Author Information
  1. Jeannine Hoepfner: Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany.
  2. Julia Leonardy: Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany.
  3. Dongchao Lu: Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany.
  4. Kevin Schmidt: Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany.
  5. Hannah J Hunkler: Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany.
  6. Sinje Biß: Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany.
  7. Ariana Foinquinos: Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany.
  8. Ke Xiao: Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany.
  9. Kumarswamy Regalla: Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany.
  10. Deepak Ramanujam: Institute of Pharmacology and Toxicology, Technical University Munich, 80802 Munich, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Munich Heart Alliance, 80802 Munich, Germany.
  11. Stefan Engelhardt: Institute of Pharmacology and Toxicology, Technical University Munich, 80802 Munich, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Munich Heart Alliance, 80802 Munich, Germany.
  12. Christian Bär: Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany; REBIRTH Center for Translational Regenerative Medicine, Hannover Medical School, 30625 Hannover, Germany; Fraunhofer Institute for Toxicology and Experimental Medicine, 30625 Hannover, Germany. Electronic address: baer.christian@mh-hannover.de.
  13. Thomas Thum: Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany; REBIRTH Center for Translational Regenerative Medicine, Hannover Medical School, 30625 Hannover, Germany; Fraunhofer Institute for Toxicology and Experimental Medicine, 30625 Hannover, Germany. Electronic address: thum.thomas@mh-hannover.de.

Abstract

Physiological and pathological cardiovascular processes are tightly regulated by several cellular mechanisms. Non-coding RNAs, including long non-coding RNAs (lncRNAs), represent one important class of molecules involved in regulatory processes within the cell. The lncRNA non-coding repressor of NFAT (NRON) was described as a repressor of the nuclear factor of activated T cells (NFAT) in different in vitro studies. Although the calcineurin/NFAT-signaling pathway is one of the most important pathways in pathological cardiac hypertrophy, a potential regulation of hypertrophy by NRON in vivo has remained unclear. Applying subcellular fractionation and RNA fluorescence in situ hybridization (RNA-FISH), we found that, unlike what is known from T cells, in cardiomyocytes, NRON predominantly localizes to the nucleus. Hypertrophic stimulation in neonatal mouse cardiomyocytes led to a downregulation of NRON, while NRON overexpression led to an increase in expression of hypertrophic markers. To functionally investigate NRON in vivo, we used a mouse model of transverse aortic constriction (TAC)-induced hypertrophy and performed NRON gain- and loss-of-function experiments. Cardiomyocyte-specific NRON overexpression in vivo exacerbated TAC-induced hypertrophy, whereas cardiomyocyte-specific NRON deletion attenuated cardiac hypertrophy in mice. Heart weight, cardiomyocyte cell size, hypertrophic marker gene expression, and left ventricular mass showed a NRON-dependent regulation upon TAC-induced hypertrophy. In line with this, transcriptome profiling revealed an enrichment of anti-hypertrophic signaling pathways upon NRON-knockout during TAC-induced hypertrophy. This set of data refutes the hypothesized anti-hypertrophic role of NRON derived from in vitro studies in non-cardiac cells and suggests a novel regulatory function of NRON in the heart in vivo.

Keywords

References

  1. Cell. 2012 May 11;149(4):819-31 [PMID: 22541069]
  2. Circ Res. 2017 Aug 18;121(5):575-583 [PMID: 28630135]
  3. J Cell Biol. 2021 Feb 1;220(2): [PMID: 33464299]
  4. Cell. 2013 Jan 31;152(3):570-83 [PMID: 23352431]
  5. Methods Mol Biol. 2007;357:271-96 [PMID: 17172694]
  6. Front Genet. 2018 Oct 17;9:440 [PMID: 30386371]
  7. Circulation. 2016 Nov 8;134(19):1484-1499 [PMID: 27821419]
  8. Science. 2005 Sep 2;309(5740):1570-3 [PMID: 16141075]
  9. Sci Transl Med. 2016 Feb 17;8(326):326ra22 [PMID: 26888430]
  10. Proc Natl Acad Sci U S A. 2011 Jul 12;108(28):11381-6 [PMID: 21709260]
  11. Circ Res. 2004 Jan 9;94(1):110-8 [PMID: 14656927]
  12. Mol Cell Biochem. 2019 Jul;457(1-2):169-177 [PMID: 30895498]
  13. Nat Struct Mol Biol. 2015 Jan;22(1):5-7 [PMID: 25565026]
  14. Trends Mol Med. 2017 Jul;23(7):577-579 [PMID: 28576601]
  15. Bioinformatics. 2014 Apr 1;30(7):923-30 [PMID: 24227677]
  16. Dev Cell. 2013 Jan 28;24(2):206-14 [PMID: 23369715]
  17. Biosci Rep. 2019 May 14;39(5): [PMID: 30996114]
  18. Genome Biol. 2014;15(12):550 [PMID: 25516281]
  19. Eur Heart J. 2020 Sep 21;41(36):3462-3474 [PMID: 32657324]
  20. PLoS Genet. 2019 May 14;15(5):e1008144 [PMID: 31086376]
  21. Sci Rep. 2015 Mar 02;5:8639 [PMID: 25728138]
  22. Biochim Biophys Acta. 2013 Dec;1832(12):2414-24 [PMID: 24036209]
  23. J Cell Mol Med. 2017 Sep;21(9):1803-1814 [PMID: 28296001]
  24. Biochem Biophys Res Commun. 2004 Oct 1;322(4):1178-91 [PMID: 15336966]
  25. Bioinformatics. 2013 Jan 1;29(1):15-21 [PMID: 23104886]
  26. Front Physiol. 2019 Jan 29;10:30 [PMID: 30761015]
  27. Biomed Pharmacother. 2018 Aug;104:102-109 [PMID: 29772429]
  28. RNA. 2019 Nov;25(11):1470-1480 [PMID: 31350341]
  29. Nat Commun. 2016 Jun 13;7:11730 [PMID: 27291871]
  30. Nature. 2018 Mar 1;555(7694):107-111 [PMID: 29466324]
  31. Proc Natl Acad Sci U S A. 1991 Sep 15;88(18):8277-81 [PMID: 1832775]

MeSH Term

Animals
Calcineurin
Cardiomegaly
Cells, Cultured
In Situ Hybridization, Fluorescence
Mice
Mice, Inbred C57BL
Myocytes, Cardiac
RNA, Long Noncoding

Chemicals

RNA, Long Noncoding
Calcineurin

Word Cloud

Created with Highcharts 10.0.0NRONhypertrophynon-codingcardiacin vivoNFATRNATAC-inducedheartpathologicalprocessesRNAslongoneimportantregulatorycellrepressorT cellsin vitrostudiespathwaysregulationcardiomyocytesmouseledoverexpressionexpressionhypertrophicuponanti-hypertrophicsignalingPhysiologicalcardiovasculartightlyregulatedseveralcellularmechanismsNon-codingincludinglncRNAsrepresentclassmoleculesinvolvedwithinlncRNAdescribednuclearfactoractivateddifferentAlthoughcalcineurin/NFAT-signalingpathwaypotentialremainedunclearApplyingsubcellularfractionationfluorescencesituhybridizationRNA-FISHfoundunlikeknownpredominantlylocalizesnucleusHypertrophicstimulationneonataldownregulationincreasemarkersfunctionallyinvestigateusedmodeltransverseaorticconstrictionTAC-inducedperformedgain-loss-of-functionexperimentsCardiomyocyte-specificexacerbatedwhereascardiomyocyte-specificdeletionattenuatedmiceHeartweightcardiomyocytesizemarkergeneleftventricularmassshowedNRON-dependentlinetranscriptomeprofilingrevealedenrichmentNRON-knockoutsetdatarefuteshypothesizedrolederivednon-cardiaccellssuggestsnovelfunctionpromotesdevelopmentmurinefailure

Similar Articles

Cited By