A Nucleocapsid-based Transcomplementation Cell Culture System of SARS-CoV-2 to Recapitulate the Complete Viral Life Cycle.

Yanying Yu, Xiaohui Ju, Qiang Ding
Author Information
  1. Yanying Yu: School of Medicine, Tsinghua University, Beijing 100084, China.
  2. Xiaohui Ju: School of Medicine, Tsinghua University, Beijing 100084, China.
  3. Qiang Ding: School of Medicine, Tsinghua University, Beijing 100084, China.

Abstract

The ongoing COVID-19 pandemic is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). As this virus is classified as a biosafety level-3 (BSL-3) agent, the development of countermeasures and basic research methods is logistically difficult. Recently, using reverse genetics, we developed a BSL-2 cell culture system for production of transcription- and replication-component virus-like-particles (trVLPs) by genetic transcomplementation. The system consists of two parts: SARS-CoV-2 GFP/ΔN genomic RNA, in which the nucleocapsid (N) gene, a critical gene for virion packaging, is replaced by a GFP reporter gene; and a packaging cell line for ectopic expression of N (Caco-2-N). The complete viral life cycle can be recapitulated and confined to Caco-2-N cells, with GFP positivity serving as a surrogate readout for viral infection. In addition, we utilized an intein-mediated protein splicing technique to split the N gene into two independent vectors and generated the Caco-2-N cells as a packaging cell line to further enhance the security of this cell culture model. Altogether, this system provides for a safe and convenient method to produce trVLPs in BSL-2 laboratories. These trVLPs can be modified to incorporate desired mutations, permitting high-throughput screening of antiviral compounds and evaluation of neutralizing antibodies. This protocol describes the details of the trVLP cell culture model to make SARS-CoV-2 research more readily accessible.

Keywords

References

  1. Virus Res. 2014 Aug 30;189:262-70 [PMID: 24930446]
  2. Antiviral Res. 2021 Jan;185:104974 [PMID: 33217430]
  3. Nat Protoc. 2006;1(1):241-5 [PMID: 17406239]
  4. Cell. 2020 Jul 23;182(2):429-446.e14 [PMID: 32526206]
  5. Cell. 2021 Apr 15;184(8):2229-2238.e13 [PMID: 33691138]
  6. Methods Mol Biol. 2009;510:329-36 [PMID: 19009272]
  7. N Engl J Med. 2020 Jun 11;382(24):2282-2284 [PMID: 32289216]
  8. Nat Protoc. 2020 Nov;15(11):3699-3715 [PMID: 32978602]
  9. Lancet. 2020 Feb 15;395(10223):470-473 [PMID: 31986257]
  10. Nat Protoc. 2021 Mar;16(3):1761-1784 [PMID: 33514944]
  11. PLoS Pathog. 2021 Mar 12;17(3):e1009439 [PMID: 33711082]
  12. Proc Natl Acad Sci U S A. 2017 Aug 8;114(32):8538-8543 [PMID: 28739907]
  13. FEBS Lett. 2009 Mar 4;583(5):909-14 [PMID: 19302791]
  14. Cell Host Microbe. 2020 May 13;27(5):841-848.e3 [PMID: 32289263]

Word Cloud

Created with Highcharts 10.0.0SARS-CoV-2cellgeneBSL-2culturesystemtrVLPsNpackagingCaco-2-NresearchgeneticstwoGFPlineviralcancellsmodeltrVLPTranscomplementationongoingCOVID-19pandemiccausedsevereacuterespiratorysyndromecoronavirus2virusclassifiedbiosafetylevel-3BSL-3agentdevelopmentcountermeasuresbasicmethodslogisticallydifficultRecentlyusingreversedevelopedproductiontranscription-replication-componentvirus-like-particlesgenetictranscomplementationconsistsparts:GFP/ΔNgenomicRNAnucleocapsidcriticalvirionreplacedreporterectopicexpressioncompletelifecyclerecapitulatedconfinedpositivityservingsurrogatereadoutinfectionadditionutilizedintein-mediatedproteinsplicingtechniquesplitindependentvectorsgeneratedenhancesecurityAltogetherprovidessafeconvenientmethodproducelaboratoriesmodifiedincorporatedesiredmutationspermittinghigh-throughputscreeningantiviralcompoundsevaluationneutralizingantibodiesprotocoldescribesdetailsmakereadilyaccessibleNucleocapsid-basedCellCultureSystemRecapitulateCompleteViralLifeCycleNucleocapsidReverse

Similar Articles

Cited By