Modulation of magnetoencephalography alpha band activity by radiofrequency electromagnetic field depicted in sensor and source space.

Jasmina Wallace, Lydia Yahia-Cherif, Christophe Gitton, Laurent Hugueville, Jean-Didier Lemaréchal, Brahim Selmaoui
Author Information
  1. Jasmina Wallace: Department of Experimental Toxicology and Modeling (TEAM), Institut National de l'Environnement Industriel et des Risques (INERIS), Parc Technologique Alata, BP 2, 60550, Verneuil-en-Halatte, France.
  2. Lydia Yahia-Cherif: Centre De NeuroImagerie De Recherche (CENIR), Institut du Cerveau et de la Moelle épinière (ICM), 75013, Paris, France.
  3. Christophe Gitton: Centre De NeuroImagerie De Recherche (CENIR), Institut du Cerveau et de la Moelle épinière (ICM), 75013, Paris, France.
  4. Laurent Hugueville: Centre De NeuroImagerie De Recherche (CENIR), Institut du Cerveau et de la Moelle épinière (ICM), 75013, Paris, France.
  5. Jean-Didier Lemaréchal: Centre De NeuroImagerie De Recherche (CENIR), Institut du Cerveau et de la Moelle épinière (ICM), 75013, Paris, France.
  6. Brahim Selmaoui: Department of Experimental Toxicology and Modeling (TEAM), Institut National de l'Environnement Industriel et des Risques (INERIS), Parc Technologique Alata, BP 2, 60550, Verneuil-en-Halatte, France. brahim.selmaoui@ineris.fr.

Abstract

Several studies reported changes in spontaneous electroencephalogram alpha band activity related to radiofrequency electromagnetic fields, but findings showed both an increase and a decrease of its spectral power or no effect. Here, we studied the alpha band modulation after 900 MHz mobile phone radiofrequency exposure and localized cortical regions involved in these changes, via a magnetoencephalography (MEG) protocol with healthy volunteers in a double-blind, randomized, counterbalanced crossover design. MEG was recorded during eyes open and eyes closed resting-state before and after radiofrequency exposure. Potential confounding factors, known to affect alpha band activity, were assessed as control parameters to limit bias. Entire alpha band, lower and upper alpha sub-bands MEG power spectral densities were estimated in sensor and source space. Biochemistry assays for salivary biomarkers of stress (cortisol, chromogranin-A, alpha amylase), heart rate variability analysis and high-performance liquid chromatography for salivary caffeine concentration were realized. Results in sensor and source space showed a significant modulation of MEG alpha band activity after the radiofrequency exposure, with different involved cortical regions in relation to the eyes condition, probably because of different attention level with open or closed eyes. None of the control parameters reported a statistically significant difference between experimental sessions.

References

  1. Clin EEG Neurosci. 2017 May;48(3):168-175 [PMID: 27118764]
  2. Clin Neurophysiol. 2002 Oct;113(10):1623-32 [PMID: 12350439]
  3. PLoS One. 2015 Jun 08;10(6):e0129496 [PMID: 26053854]
  4. J Neurosci Methods. 2007 Aug 15;164(1):177-90 [PMID: 17517438]
  5. Neurosci Lett. 2002 Nov 29;333(3):175-8 [PMID: 12429376]
  6. Neuroreport. 2004 May 19;15(7):1191-4 [PMID: 15129172]
  7. Bioelectromagnetics. 2019 Jul;40(5):291-318 [PMID: 31215052]
  8. Brain Res Brain Res Rev. 1999 Apr;29(2-3):169-95 [PMID: 10209231]
  9. Annu Int Conf IEEE Eng Med Biol Soc. 2008;2008:5680-3 [PMID: 19164006]
  10. J Sleep Res. 2002 Dec;11(4):289-95 [PMID: 12464096]
  11. Clin Neurophysiol. 2013 Jul;124(7):1303-8 [PMID: 23428307]
  12. Bioelectromagnetics. 2008 Oct;29(7):527-38 [PMID: 18452168]
  13. Bioelectromagnetics. 2010 Sep;31(6):434-44 [PMID: 20564174]
  14. Bioelectromagnetics. 2019 Jan;40(1):42-51 [PMID: 30562416]
  15. Biol Psychol. 2007 Jul;75(3):239-47 [PMID: 17512106]
  16. Bioelectromagnetics. 2013 Jan;34(1):31-42 [PMID: 22674213]
  17. Electroencephalogr Clin Neurophysiol. 1993 Apr;86(4):219-23 [PMID: 7682923]
  18. Bioelectromagnetics. 2011 May;32(4):253-72 [PMID: 21452356]
  19. Psychoneuroendocrinology. 2007 May;32(4):392-401 [PMID: 17418498]
  20. Radiat Res. 2012 Dec;178(6):543-50 [PMID: 23106209]
  21. Toxicol Ind Health. 2016 Jun;32(6):968-79 [PMID: 24604340]
  22. Environ Res. 2019 Aug;175:274-286 [PMID: 31146099]
  23. Scand J Work Environ Health. 2000 Apr;26(2):87-92 [PMID: 10817372]
  24. Neuroscience. 2018 Aug 10;385:11-24 [PMID: 29902504]
  25. Int J Psychophysiol. 2006 Feb;59(2):116-26 [PMID: 15946755]
  26. Cells Tissues Organs. 2005;180(4):237-44 [PMID: 16330879]
  27. Int J Radiat Biol. 2021;97(11):1505-1515 [PMID: 34402382]
  28. N Engl J Med. 1984 Sep 20;311(12):764-70 [PMID: 6472366]
  29. Bioelectromagnetics. 2008 Jan;29(1):1-10 [PMID: 17786925]
  30. Handb Clin Neurol. 2011;102:21-69 [PMID: 21601062]
  31. Neuroimage. 2018 Jan 15;165:222-237 [PMID: 29074278]
  32. Neurotox Res. 2017 Oct;32(3):444-459 [PMID: 28578480]
  33. Phys Med Biol. 2008 Jun 7;53(11):2771-83 [PMID: 18451464]
  34. Bioelectromagnetics. 1997;18(2):172-6 [PMID: 9084868]
  35. Australas Phys Eng Sci Med. 2007 Dec;30(4):274-80 [PMID: 18274067]
  36. Brain Res. 2014 Aug 19;1577:36-44 [PMID: 25010817]
  37. Neurosci Lett. 2012 Jun 14;518(1):27-31 [PMID: 22575610]
  38. Neuroimage. 1999 Feb;9(2):179-94 [PMID: 9931268]
  39. Clin EEG Neurosci. 2009 Apr;40(2):122-8 [PMID: 19534304]
  40. Brain Stimul. 2013 May;6(3):448-54 [PMID: 22889717]
  41. Korean J Physiol Pharmacol. 2018 May;22(3):277-289 [PMID: 29719450]
  42. Clin Neurophysiol. 2012 Jan;123(1):129-36 [PMID: 21741302]
  43. Sci Rep. 2017 Jan 20;7:41129 [PMID: 28106136]
  44. Int J Environ Res Public Health. 2019 Apr 28;16(9): [PMID: 31035391]
  45. Eur J Neurosci. 2005 Feb;21(4):1000-6 [PMID: 15787706]
  46. J Sleep Res. 1998 Sep;7(3):145-57 [PMID: 9785269]
  47. Conf Proc IEEE Eng Med Biol Soc. 2006;2006:3751-4 [PMID: 17946579]
  48. PLoS One. 2017 Oct 18;12(10):e0186416 [PMID: 29045446]
  49. J Neurophysiol. 2015 Apr 1;113(7):2753-9 [PMID: 25695646]
  50. Clin Neurophysiol. 2007 Dec;118(12):2765-73 [PMID: 17911042]
  51. Eur J Med Res. 1995 Oct 16;1(1):27-32 [PMID: 9392690]
  52. Australas Phys Eng Sci Med. 2003 Dec;26(4):162-7 [PMID: 14995060]
  53. Front Public Health. 2017 Sep 28;5:258 [PMID: 29034226]
  54. Hum Brain Mapp. 2016 Jan;37(1):179-90 [PMID: 26467848]
  55. Clin Neurophysiol. 2010 Feb;121(2):163-71 [PMID: 20005167]
  56. Neuroimage. 2003 Jul;19(3):924-34 [PMID: 12880821]
  57. Electromagn Biol Med. 2017;36(2):202-212 [PMID: 27874295]
  58. Pacing Clin Electrophysiol. 2010 Nov;33(11):1407-17 [PMID: 20663071]
  59. Sci Rep. 2018 Dec 20;8(1):18010 [PMID: 30573783]
  60. IEEE Trans Biomed Eng. 2013 Jun;60(6):1702-10 [PMID: 23358937]
  61. Braz J Med Biol Res. 2005 Jul;38(7):1077-86 [PMID: 16007279]
  62. Brain Connect. 2016 Jul;6(6):448-60 [PMID: 27212454]
  63. Biol Psychol. 2005 May;69(2):181-93 [PMID: 15804545]
  64. Eur J Neurosci. 2007 Mar;25(6):1908-13 [PMID: 17432975]
  65. Ann Clin Biochem. 1983 Nov;20 (Pt 6):329-35 [PMID: 6316831]
  66. Neurosci Res. 2005 Nov;53(3):265-70 [PMID: 16102863]
  67. Neuroreport. 2007 May 28;18(8):803-7 [PMID: 17471070]
  68. Nat Neurosci. 2017 Feb 23;20(3):327-339 [PMID: 28230841]
  69. Electroencephalogr Clin Neurophysiol. 1991 Jul;79(1):20-6 [PMID: 1713548]
  70. J Cereb Blood Flow Metab. 2006 Jul;26(7):885-90 [PMID: 16495939]
  71. Bioelectromagnetics. 2013 Dec;34(8):571-8 [PMID: 23913345]
  72. Front Neurosci. 2013 Dec 26;7:267 [PMID: 24431986]
  73. Radiat Res. 2015 Dec;184(6):568-77 [PMID: 26600173]

MeSH Term

Adult
Biomarkers
Caffeine
Cerebral Cortex
Chromatography, High Pressure Liquid
Cross-Over Studies
Double-Blind Method
Electromagnetic Fields
Female
Humans
Magnetoencephalography
Male
Ocular Physiological Phenomena
Rest
Saliva
Young Adult

Chemicals

Biomarkers
Caffeine

Word Cloud

Created with Highcharts 10.0.0alphabandradiofrequencyactivityMEGeyesexposuresensorsourcespacereportedchangeselectromagneticshowedspectralpowermodulationcorticalregionsinvolvedmagnetoencephalographyopenclosedcontrolparameterssalivarysignificantdifferentSeveralstudiesspontaneouselectroencephalogramrelatedfieldsfindingsincreasedecreaseeffectstudied900 MHzmobilephonelocalizedviaprotocolhealthyvolunteersdouble-blindrandomizedcounterbalancedcrossoverdesignrecordedresting-statePotentialconfoundingfactorsknownaffectassessedlimitbiasEntireloweruppersub-bandsdensitiesestimatedBiochemistryassaysbiomarkersstresscortisolchromogranin-Aamylaseheartratevariabilityanalysishigh-performanceliquidchromatographycaffeineconcentrationrealizedResultsrelationconditionprobablyattentionlevelNonestatisticallydifferenceexperimentalsessionsModulationfielddepicted

Similar Articles

Cited By