The Artificial Intelligence Doctor: Considerations for the Clinical Implementation of Ethical AI.

Julius M Kernbach, Karlijn Hakvoort, Jonas Ort, Hans Clusmann, Georg Neuloh, Daniel Delev
Author Information
  1. Julius M Kernbach: Neurosurgical Artificial Intelligence Laboratory Aachen (NAILA), RWTH Aachen University Hospital, Aachen, Germany. jkernbach@ukaachen.de.
  2. Karlijn Hakvoort: Neurosurgical Artificial Intelligence Laboratory Aachen (NAILA), RWTH Aachen University Hospital, Aachen, Germany.
  3. Jonas Ort: Neurosurgical Artificial Intelligence Laboratory Aachen (NAILA), RWTH Aachen University Hospital, Aachen, Germany.
  4. Hans Clusmann: Department of Neurosurgery, Faculty of Medicine, RWTH Aachen University, Aachen, Germany.
  5. Georg Neuloh: Department of Neurosurgery, Faculty of Medicine, RWTH Aachen University, Aachen, Germany.
  6. Daniel Delev: Neurosurgical Artificial Intelligence Laboratory Aachen (NAILA), RWTH Aachen University Hospital, Aachen, Germany.

Abstract

The applications of artificial intelligence (AI) and machine learning (ML) in modern medicine are growing exponentially, and new developments are fast-paced. However, the lack of trust and appropriate legislation hinder its clinical implementation. Recently, there is a clear increase of directives and considerations on Ethical AI. However, most literature broadly deals with ethical tensions on a meta-level without offering hands-on advice in practice. In this article, we non-exhaustively cover basic practical guidelines regarding AI-specific ethical aspects, including transparency and explicability, equity and mitigation of biases, and lastly, liability.

Keywords

References

  1. Deo RC. Machine learning in medicine. Circulation. 2015;132(20):1920–30. https://doi.org/10.1161/CIRCULATIONAHA.115.001593 . [DOI: 10.1161/CIRCULATIONAHA.115.001593]
  2. Jordan MI, Mitchell TM. Machine learning: trends, perspectives, and prospects. Science. 2015;349:255–60. https://doi.org/10.1126/science.aaa8415 . [DOI: 10.1126/science.aaa8415]
  3. Topol EJ. High-performance medicine: the convergence of human and artificial intelligence. Nat Med. 2019;25(1):44–56. [DOI: 10.1038/s41591-018-0300-7]
  4. Vellido A. Societal issues concerning the application of artificial intelligence in medicine. Kidney Dis. 2019;5(1):11–7. [DOI: 10.1159/000492428]
  5. Whittlestone J, Alexandrova A, Nyrup R, Cave S. The role and limits of principles in AI ethics: towards a focus on tensions. In: AIES 2019—Proceedings of the 2019 AAAI/ACM conference on AI, ethics, and society; 2019. p. 195–200.
  6. Jobin A, Ienca M, Vayena E. Artificial intelligence: the global landscape of ethics guidelines. arXiv; 2019.
  7. European Commision. Artificial intelligence: commission takes forward its work on ethics guidelines; 2019.
  8. Reznick RK, Harris K, Horsley T. Artificial intelligence (AI) and emerging digital technologies; 2020.
  9. Crawford K, Dobbe R, Dryer T, et al. AI now 2019 report. New York: AI Now Institute; 2019.
  10. Floridi L. Establishing the rules for building trustworthy AI. Nat Mach Intell. 2019;1(6):261–2. [DOI: 10.1038/s42256-019-0055-y]
  11. Bonsanto MM, Tronnier VM. Artificial intelligence in neurosurgery. Chirurg. 2020;91(3):229–34. [DOI: 10.1007/s00104-020-01131-9]
  12. Senders JT, Arnaout O, Karhade AV, Dasenbrock HH, Gormley WB, Broekman ML, Smith TR. Natural and artificial intelligence in neurosurgery: a systematic review. Clin Neurosurg. 2018;83(2):181–92. [DOI: 10.1093/neuros/nyx384]
  13. Dreiseitl S, Binder M. Do physicians value decision support? A look at the effect of decision support systems on physician opinion. Artif Intell Med. 2005;33(1):25–30. https://doi.org/10.1016/j.artmed.2004.07.007 . [DOI: 10.1016/j.artmed.2004.07.007]
  14. Goodman B, Flaxman S. European Union regulations on algorithmic decision making and a “right to explanation”. AI Mag. 2017;38(3):50–7. https://doi.org/10.1609/aimag.v38i3.2741 . [DOI: 10.1609/aimag.v38i3.2741]
  15. Ross C, Swetlitz I. IBM’s Watson supercomputer recommended ‘unsafe and incorrect’ cancer treatments, internal documents show. Stat+; 2018.
  16. Varshney KR, Alemzadeh H. On the safety of machine learning: cyber-physical systems, decision sciences, and data products. Big Data. 2016;5:246–55. [DOI: 10.1089/big.2016.0051]
  17. Goodfellow I, Bengio Y, Courville A, Bengio Y. Deep learning. Cambridge, MA: The MIT Press; 2016.
  18. LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015;521(7553):436. [DOI: 10.1038/nature14539]
  19. Djuric U, Zadeh G, Aldape K, Diamandis P. Precision histology: how deep learning is poised to revitalize histomorphology for personalized cancer care. NPJ Precis Oncol. 2017;1:22. https://doi.org/10.1038/s41698-017-0022-1 . [DOI: 10.1038/s41698-017-0022-1]
  20. Farabet C, Couprie C, Najman L, Lecun Y. Learning hierarchical features for scene labeling. IEEE Trans Pattern Anal Mach Intell. 2013;35(8):1915–29. https://doi.org/10.1109/TPAMI.2012.231 . [DOI: 10.1109/TPAMI.2012.231]
  21. Krizhevsky A, Sutskever I, Hinton GE. ImageNet classification with deep convolutional neural networks. Adv Neural Inf Proces Syst. 2012. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001284 .
  22. Hinton G, Deng L, Yu D, et al. Deep neural networks for acoustic modeling in speech recognition. IEEE Signal Process Mag. 2012;29(6):82–97. https://doi.org/10.1109/MSP.2012.2205597 . [DOI: 10.1109/MSP.2012.2205597]
  23. Mikolov T, Deoras A, Povey D, Burget L, Černocký J. Strategies for training large scale neural network language models. In: 2011 IEEE workshop on automatic speech recognition and understanding, ASRU 2011, PRO; 2011. https://doi.org/10.1109/ASRU.2011.6163930 . [DOI: 10.1109/ASRU.2011.6163930]
  24. Albers DJ, Levine ME, Stuart A, Mamykina L, Gluckman B, Hripcsak G. Mechanistic machine learning: how data assimilation leverages physiologic knowledge using Bayesian inference to forecast the future, infer the present, and phenotype. J Am Med Inform Assoc. 2018;25(10):1392–401. https://doi.org/10.1093/jamia/ocy106 . [DOI: 10.1093/jamia/ocy106]
  25. Lundberg SM, Nair B, Vavilala MS, et al. Explainable machine-learning predictions for the prevention of hypoxaemia during surgery. Nat Biomed Eng. 2018;2(10):749–60. https://doi.org/10.1038/s41551-018-0304-0 . [DOI: 10.1038/s41551-018-0304-0]
  26. Rudin C. Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead. Nat Mach Intell. 2019;1:206–15. https://doi.org/10.1038/s42256-019-0048-x . [DOI: 10.1038/s42256-019-0048-x]
  27. Ribeiro MT, Singh S, Guestrin C. “Why should i trust you?” Explaining the predictions of any classifier. In: Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining; 2016. https://doi.org/10.1145/2939672.2939778 . [DOI: 10.1145/2939672.2939778]
  28. Petsiuk V, Das A, Saenko K. RISE: randomized input sampling for explanation of black-box models. arXiv; 2018.
  29. Mittelstadt B. Principles alone cannot guarantee ethical AI. Nat Mach Intell. 2019;1(11):501–7. [DOI: 10.1038/s42256-019-0114-4]
  30. Wang T, Zhao J, Yatskar M, Chang KW, Ordonez V. Balanced datasets are not enough: Estimating and mitigating gender bias in deep image representations. In: Proceedings of the IEEE International Conference on Computer Vision 2019-October; 2019. p. 5309–18.
  31. Esteva A, Robicquet A, Ramsundar B, Kuleshov V, DePristo M, Chou K, Cui C, Corrado G, Thrun S, Dean J. A guide to deep learning in healthcare. Nat Med. 2019;25(1):24–9. https://doi.org/10.1038/s41591-018-0316-z . [DOI: 10.1038/s41591-018-0316-z]
  32. Rajkomar A, Oren E, Chen K, et al. Scalable and accurate deep learning for EHR—supplement. NPJ Digit Med. 2018;1:18. [DOI: 10.1038/s41746-018-0029-1]
  33. Weng SF, Vaz L, Qureshi N, Kai J. Prediction of premature all-cause mortality: a prospective general population cohort study comparing machine-learning and standard epidemiological approaches. PLoS One. 2019;14:e0214365. https://doi.org/10.1371/journal.pone.0214365 . [DOI: 10.1371/journal.pone.0214365]
  34. Schulz MA, Thomas Yeo BT, Vogelstein JT, Mourao-Miranada J, Kather JN, Kording K, Richards B, Bzdok D. Deep learning for brains?: different linear and nonlinear scaling in UK biobank brain images vs. machine-learning datasets. In: bioRxiv; 2019. https://doi.org/10.1101/757054 . [DOI: 10.1101/757054]
  35. Bellot P, de los Campos G, Pérez-Enciso M. Can deep learning improve genomic prediction of complex human traits? Genetics. 2018;210(3):809–19. https://doi.org/10.1534/genetics.118.301298 . [DOI: 10.1534/genetics.118.301298]
  36. Hastie T, Tibshirani R, Friedman J. Springer series in statistics the elements of statistical learning—data mining, inference, and prediction. Berlin: Springer; 2009.
  37. James G, Witten D, Hastie T, Tibshirani R. An introduction to statistical learning. Curr Med Chem. 2000. https://doi.org/10.1007/978-1-4614-7138-7 .
  38. Kuhn M, Johnson K. Applied predictive modeling. New York: Springer; 2013. https://doi.org/10.1007/978-1-4614-6849-3 . [DOI: 10.1007/978-1-4614-6849-3]
  39. Neeman T. Clinical prediction models: a practical approach to development, validation, and updating by Ewout W. Steyerberg. Int Stat Rev. 2009;77(2):320–1. https://doi.org/10.1111/j.1751-5823.2009.00085_22.x . [DOI: 10.1111/j.1751-5823.2009.00085_22.x]
  40. Poldrack RA, Huckins G, Varoquaux G. Establishment of best practices for evidence for prediction: a review. JAMA Psychiat. 2020;77(5):534–40. https://doi.org/10.1001/jamapsychiatry.2019.3671 . [DOI: 10.1001/jamapsychiatry.2019.3671]
  41. Hardt M, Price E, Srebro N. Equality of opportunity in supervised learning. In: Advances in neural information processing systems; 2016.
  42. Yao S, Huang B. Beyond parity: fairness objectives for collaborative filtering. In: Advances in neural information processing systems; 2017.
  43. Esteva A, Kuprel B, Novoa RA, Ko J, Swetter SM, Blau HM, Thrun S. Dermatologist-level classification of skin cancer with deep neural networks. Nature. 2017;542(7639):115–8. [DOI: 10.1038/nature21056]
  44. Xie Q, Dai Z, Du Y, Hovy E, Neubig G. Controllable invariance through adversarial feature learning. In: Advances in neural information processing systems; 2017.
  45. Zhang BH, Lemoine B, Mitchell M. Mitigating unwanted biases with adversarial learning. In: AIES 2018—Proceedings of the 2018 AAAI/ACM conference on AI, ethics, and society; 2018. https://doi.org/10.1145/3278721.3278779 . [DOI: 10.1145/3278721.3278779]
  46. Stringhini S, Carmeli C, Jokela M, et al. Socioeconomic status and the 25 × 25 risk factors as determinants of premature mortality: a multicohort study and meta-analysis of 1.7 million men and women. Lancet. 2017;389(10075):1229–37. [DOI: 10.1016/S0140-6736(16)32380-7]
  47. European Commission E. Work Programme 2018–2020: Science with and for society; 2018.
  48. Bathaee Y. The artificial intelligence black box and the failure of intent and causation. Harv J Law Technol. 2018;31(2):889–936.
  49. Buiten MC. Towards intelligent regulation of artificial intelligence. Eur J Risk Regul. 2019;10(1):41–59. [DOI: 10.1017/err.2019.8]
  50. Gasser U, Almeida VAF. A layered model for AI governance. IEEE Internet Comput. 2017;21(6):58–62. [DOI: 10.1109/MIC.2017.4180835]

MeSH Term

Artificial Intelligence
Machine Learning

Word Cloud

Created with Highcharts 10.0.0AIlearningintelligenceHoweverEthicalethicalArtificialapplicationsartificialmachineMLmodernmedicinegrowingexponentiallynewdevelopmentsfast-pacedlacktrustappropriatelegislationhinderclinicalimplementationRecentlyclearincreasedirectivesconsiderationsliteraturebroadlydealstensionsmeta-levelwithoutofferinghands-onadvicepracticearticlenon-exhaustivelycoverbasicpracticalguidelinesregardingAI-specificaspectsincludingtransparencyexplicabilityequitymitigationbiaseslastlyliabilityIntelligenceDoctor:ConsiderationsClinicalImplementationDeepMachineNeurooncologyNeurosurgery

Similar Articles

Cited By