Magnetic resonance imaging-based radiomics signature for preoperative prediction of Ki67 expression in bladder cancer.

Zongtai Zheng, Zhuoran Gu, Feijia Xu, Niraj Maskey, Yanyan He, Yang Yan, Tianyuan Xu, Shenghua Liu, Xudong Yao
Author Information
  1. Zongtai Zheng: Department of Urology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Yan Chang Zhong Road 301, Shanghai, 200072, China.
  2. Zhuoran Gu: Department of Urology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Yan Chang Zhong Road 301, Shanghai, 200072, China.
  3. Feijia Xu: Department of Radiology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China.
  4. Niraj Maskey: Department of Urology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Yan Chang Zhong Road 301, Shanghai, 200072, China.
  5. Yanyan He: Department of Pathology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China.
  6. Yang Yan: Department of Urology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Yan Chang Zhong Road 301, Shanghai, 200072, China.
  7. Tianyuan Xu: Department of Urology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Yan Chang Zhong Road 301, Shanghai, 200072, China.
  8. Shenghua Liu: Department of Urology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Yan Chang Zhong Road 301, Shanghai, 200072, China. drfelixliu@163.com.
  9. Xudong Yao: Department of Urology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Yan Chang Zhong Road 301, Shanghai, 200072, China. yaoxudong1967@163.com.

Abstract

PURPOSE: The Ki67 expression is associated with the advanced clinicopathological features and poor prognosis in bladder cancer (BCa). We aimed to develop and validate magnetic resonance imaging (MRI)-based radiomics signatures to preoperatively predict the Ki67 expression status in BCa.
METHODS AND MATERIALS: We retrospectively collected 179 BCa patients with Ki67 expression and preoperative MRI. Radiomics features were extracted from T2-weighted (T2WI) and dynamic contrast-enhancement (DCE) images. The synthetic minority over-sampling technique (SMOTE) was used to balance the minority group (low Ki67 expression group) in the training set. Minimum redundancy maximum relevance was used to identify the best features associated with Ki67 expression. Support vector machine and Least Absolute Shrinkage and Selection Operator algorithms (LASSO) were used to construct radiomics signatures in training and SMOTE-training sets, and diagnostic performance was assessed by the area under the curve (AUC) and accuracy. The decision curve analyses (DCA) and calibration curve and were used to investigate the clinical usefulness and calibration of radiomics signatures, respectively. The Kaplan-Meier test was performed to investigate the prognostic value of radiomics-predicted Ki67 expression status.
RESULTS: 1218 radiomics features were extracted from T2WI and DCE images, respectively. The SMOTE-LASSO model based on nine features achieved the best predictive performance in the SMOTE-training (AUC, 0.859; accuracy, 80.3%) and validation sets (AUC, 0.819; accuracy, 81.5%) with a good calibration performance and clinical usefulness. Immunohistochemistry-based high Ki67 expression and radiomics-predicted high Ki67 expression based on the SMOTE-LASSO model were significantly associated with poor disease-free survival in training and validation sets (all P < 0.05).
CONCLUSIONS: The SMOTE-LASSO model could predict the Ki67 expression status and was associated with survival outcomes of the BCa patients, thereby may aid in clinical decision-making.

Keywords

References

  1. Eur Urol. 2019 Nov;76(5):639-657 [PMID: 31443960]
  2. Transl Androl Urol. 2020 Apr;9(2):445-451 [PMID: 32420150]
  3. Abdom Radiol (NY). 2021 Sep;46(9):4311-4323 [PMID: 33978825]
  4. Clin Cancer Res. 2006 Dec 15;12(24):7369-73 [PMID: 17189409]
  5. Eur Urol. 2020 Jan;77(1):101-109 [PMID: 31699526]
  6. Cancer Res. 2017 Nov 1;77(21):e104-e107 [PMID: 29092951]
  7. Eur Radiol. 2020 Sep;30(9):4816-4827 [PMID: 32318846]
  8. Br J Cancer. 2007 Jun 4;96(11):1711-5 [PMID: 17505513]
  9. J Immunother Cancer. 2020 Nov;8(2): [PMID: 33188037]
  10. Nat Commun. 2020 Aug 27;11(1):4308 [PMID: 32855399]
  11. Eur J Radiol. 2019 Sep;118:32-37 [PMID: 31439255]
  12. Urol Oncol. 2019 Feb;37(2):158-165 [PMID: 30446453]
  13. Clin Transl Med. 2020 Jan 31;9(1):12 [PMID: 32006200]
  14. IEEE J Biomed Health Inform. 2020 Jun;24(6):1632-1642 [PMID: 31794406]
  15. J Neurooncol. 2017 Nov;135(2):317-324 [PMID: 28900812]
  16. J Magn Reson Imaging. 2017 Aug;46(2):383-392 [PMID: 27862582]
  17. Cancers (Basel). 2021 Mar 19;13(6): [PMID: 33808614]
  18. Eur Radiol. 2020 Oct;30(10):5392-5403 [PMID: 32394281]
  19. BMJ Open. 2018 Apr 17;8(4):e019635 [PMID: 29666128]
  20. Eur Radiol. 2021 Sep;31(9):6846-6855 [PMID: 33638019]
  21. Eur Radiol. 2019 Nov;29(11):6182-6190 [PMID: 31016445]
  22. Eur Radiol. 2020 Mar;30(3):1804-1812 [PMID: 31773297]
  23. World J Gastroenterol. 2014 Dec 7;20(45):16964-75 [PMID: 25493009]
  24. Cancers (Basel). 2019 Dec 04;11(12): [PMID: 31817111]
  25. Nat Commun. 2014 Jun 03;5:4006 [PMID: 24892406]
  26. J Magn Reson Imaging. 2019 Dec;50(6):1893-1904 [PMID: 30980695]
  27. AJR Am J Roentgenol. 2016 Oct;207(4):797-803 [PMID: 27505309]
  28. Comput Math Methods Med. 2014;2014:536217 [PMID: 25371701]
  29. Int Urol Nephrol. 2016 Apr;48(4):495-501 [PMID: 26759323]
  30. Eur Urol. 2018 Dec;74(6):784-795 [PMID: 30268659]
  31. EBioMedicine. 2018 Aug;34:76-84 [PMID: 30078735]
  32. Clin Radiol. 2018 Oct;73(10):909.e1-909.e5 [PMID: 29970244]
  33. Cancer. 2019 Dec 15;125(24):4388-4398 [PMID: 31469418]
  34. CA Cancer J Clin. 2018 Nov;68(6):394-424 [PMID: 30207593]
  35. Int J Mol Sci. 2018 Aug 28;19(9): [PMID: 30154342]
  36. Eur Urol. 2006 Sep;50(3):506-15; discussion 515 [PMID: 16624482]
  37. IEEE Trans Pattern Anal Mach Intell. 2005 Aug;27(8):1226-38 [PMID: 16119262]
  38. Transl Oncol. 2017 Dec;10(6):911-916 [PMID: 28987630]
  39. Front Oncol. 2021 May 13;11:619893 [PMID: 34055600]

Grants

  1. 20215YPDRC048/outstanding talent of shanghai tenth people's hospital
  2. 81472389/natural science foundation of china
  3. 19411967700/shanghai science committee foundation
  4. 20YF1437200/shanghai youth science and technology talents sailing program

MeSH Term

Humans
Ki-67 Antigen
Magnetic Resonance Imaging
Preoperative Care
Retrospective Studies
Urinary Bladder Neoplasms

Chemicals

Ki-67 Antigen

Word Cloud

Created with Highcharts 10.0.0Ki67expressionfeaturesradiomicsassociatedBCausedcancerresonancesignaturesstatustrainingsetsperformancecurveAUCaccuracycalibrationclinicalSMOTE-LASSOmodelpoorbladderimagingMRIpredictpatientspreoperativeRadiomicsextractedT2WIDCEimagesminoritygroupbestSMOTE-traininginvestigateusefulnessrespectivelyradiomics-predictedbased0validationhighsurvivalMagneticPURPOSE:advancedclinicopathologicalprognosisaimeddevelopvalidatemagnetic-basedpreoperativelyMETHODSANDMATERIALS:retrospectivelycollected179T2-weighteddynamiccontrast-enhancementsyntheticover-samplingtechniqueSMOTEbalancelowsetMinimumredundancymaximumrelevanceidentifySupportvectormachineLeastAbsoluteShrinkageSelectionOperatoralgorithmsLASSOconstructdiagnosticassessedareadecisionanalysesDCAKaplan-MeiertestperformedprognosticvalueRESULTS:1218nineachievedpredictive859803%819815%goodImmunohistochemistry-basedsignificantlydisease-freeP < 005CONCLUSIONS:outcomestherebymayaiddecision-makingimaging-basedsignaturepredictionBladder

Similar Articles

Cited By