Designed Antimicrobial Peptides Against Gram-Negative Bacteria.

Shravani S Bobde, Fahad M Alsaab, Guangshuan Wang, Monique L Van Hoek
Author Information
  1. Shravani S Bobde: School of Systems Biology, George Mason University, Manassas, VA, United States.
  2. Fahad M Alsaab: School of Systems Biology, George Mason University, Manassas, VA, United States.
  3. Guangshuan Wang: Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, United States.
  4. Monique L Van Hoek: School of Systems Biology, George Mason University, Manassas, VA, United States.

Abstract

Antimicrobial peptides (AMPs) are ubiquitous amongst living organisms and are part of the innate immune system with the ability to kill pathogens directly or indirectly by modulating the immune system. AMPs have potential as a novel therapeutic against bacteria due to their quick-acting mechanism of action that prevents bacteria from developing resistance. Additionally, there is a dire need for therapeutics with activity specifically against Gram-negative bacterial infections that are intrinsically difficult to treat, with or without acquired drug resistance. Development of new antibiotics has slowed in recent years and novel therapeutics (like AMPs) with a focus against Gram-negative bacteria are needed. We designed eight novel AMPs, termed PHNX peptides, using computational design (database filtering technology combined with the novel positional analysis on APD3 dataset of AMPs with activity against Gram-negative bacteria) and assessed their theoretical function using published machine learning algorithms, and finally, validated their activity in our laboratory. These AMPs were tested to establish their minimum inhibitory concentration (MIC) and half-maximal effective concentration (EC) under CLSI methodology against antibiotic resistant and antibiotic susceptible and . Laboratory-based experimental results were compared to computationally predicted activities for each of the peptides to ascertain the accuracy of the computational tools used. PHNX-1 demonstrated antibacterial activity (under high and low-salt conditions) against antibiotic resistant and susceptible strains of Gram-positive and Gram-negative bacteria and PHNX-4 to -8 demonstrated low-salt antibacterial activity only. The AMPs were then evaluated for cytotoxicity using hemolysis against human red blood cells and demonstrated some hemolysis which needs to be further evaluated. In this study, we successfully developed a design methodology to create synthetic AMPs with a narrow spectrum of activity where the PHNX AMPs demonstrated higher antibacterial activity against Gram-negative bacteria compared to Gram-positive bacteria. Thus, these peptides present novel synthetic peptides with a potential for therapeutic use. Based on our findings, we propose upfront selection of the peptide dataset for analysis, an additional step of positional analysis to add to the database filtering technology (DFT) method, and we present laboratory data on the novel, synthetically designed AMPs to validate the results of the computational approach. We aim to conduct future studies which could establish these AMPs for clinical use.

Keywords

References

  1. Bioinformatics. 2008 Sep 15;24(18):2101-2 [PMID: 18662927]
  2. Front Microbiol. 2020 Jan 22;10:3097 [PMID: 32038544]
  3. Cold Spring Harb Perspect Biol. 2010 May;2(5):a000414 [PMID: 20452953]
  4. J Microbiol. 2018 Feb;56(2):128-137 [PMID: 29392557]
  5. Bioinformatics. 2017 Jul 1;33(13):1921-1929 [PMID: 28203715]
  6. J Nat Prod. 2015 Jul 24;78(7):1495-504 [PMID: 26107622]
  7. J Mol Biol. 1982 May 5;157(1):105-32 [PMID: 7108955]
  8. Chem Biol. 2013 Oct 24;20(10):1286-95 [PMID: 24120333]
  9. Proc Natl Acad Sci U S A. 2019 Jul 2;116(27):13517-13522 [PMID: 31209048]
  10. PLoS One. 2008 Sep 16;3(9):e3217 [PMID: 18795096]
  11. Nat Struct Biol. 1996 Oct;3(10):842-8 [PMID: 8836100]
  12. J Antimicrob Chemother. 2010 Apr;65(4):601-4 [PMID: 20181573]
  13. Chem Biol Drug Des. 2019 Aug;94(2):1537-1544 [PMID: 31059203]
  14. Biochem Biophys Res Commun. 1998 Sep 29;250(3):589-92 [PMID: 9784389]
  15. Nucleic Acids Res. 2021 Jan 8;49(D1):D288-D297 [PMID: 33151284]
  16. Proc Natl Acad Sci U S A. 1992 Nov 15;89(22):10915-9 [PMID: 1438297]
  17. Nat Protoc. 2008;3(2):163-75 [PMID: 18274517]
  18. Science. 2020 May 1;368(6490): [PMID: 32355003]
  19. Antimicrob Agents Chemother. 1998 Sep;42(9):2206-14 [PMID: 9736536]
  20. J Am Chem Soc. 2019 Mar 27;141(12):4839-4848 [PMID: 30839209]
  21. Acta Biochim Biophys Sin (Shanghai). 2017 Jun 1;49(6):550-559 [PMID: 28402481]
  22. Microb Drug Resist. 2019 Jan/Feb;25(1):72-79 [PMID: 30142035]
  23. Biochem Biophys Res Commun. 2018 Jan 22;495(4):2539-2546 [PMID: 29191658]
  24. Int J Genomics. 2018 Jul 11;2018:8158453 [PMID: 30116731]
  25. Pharmaceuticals (Basel). 2014 Mar 25;7(4):366-91 [PMID: 24670666]
  26. Nucleic Acids Res. 2016 Jan 4;44(D1):D1087-93 [PMID: 26602694]
  27. Molecules. 2020 Jun 19;25(12): [PMID: 32575664]
  28. IEEE/ACM Trans Comput Biol Bioinform. 2012 Sep-Oct;9(5):1535-8 [PMID: 22732690]
  29. Peptides. 2009 Oct;30(10):1775-81 [PMID: 19635516]
  30. BMC Microbiol. 2016 Aug 19;16(1):189 [PMID: 27542832]
  31. J Chem Inf Model. 2015 Oct 26;55(10):2275-87 [PMID: 26332863]
  32. Crit Rev Microbiol. 2019 May;45(3):301-314 [PMID: 30985240]
  33. Molecules. 2017 Nov 22;22(11): [PMID: 29165350]
  34. Chem Biol. 2010 Sep 24;17(9):970-80 [PMID: 20851346]
  35. Front Chem. 2018 Jun 05;6:204 [PMID: 29922648]
  36. Pharmaceuticals (Basel). 2013 Nov 28;6(12):1543-75 [PMID: 24287494]
  37. Front Microbiol. 2018 Nov 28;9:2846 [PMID: 30555431]
  38. Front Cell Infect Microbiol. 2016 Dec 27;6:194 [PMID: 28083516]
  39. Mol Ther Nucleic Acids. 2020 Jun 5;20:882-894 [PMID: 32464552]
  40. J Am Chem Soc. 2012 Aug 1;134(30):12426-9 [PMID: 22803960]
  41. Dev Comp Immunol. 2017 May;70:135-144 [PMID: 28089718]
  42. Chem Pharm Bull (Tokyo). 2020;68(3):182-190 [PMID: 32115524]
  43. BMC Microbiol. 2011 May 23;11:114 [PMID: 21605457]
  44. Front Bioeng Biotechnol. 2020 Dec 03;8:604041 [PMID: 33344436]
  45. Nucleic Acids Res. 2016 Jan 4;44(D1):D1094-7 [PMID: 26467475]
  46. Int J Mol Sci. 2020 Sep 24;21(19): [PMID: 32987946]
  47. Biopolymers. 2016 May;106(3):345-56 [PMID: 26849911]

Grants

  1. R01 GM138552/NIGMS NIH HHS

Word Cloud

Created with Highcharts 10.0.0AMPsbacteriaactivitynovelGram-negativepeptidescomputationaldemonstratedusingdesignanalysisantibioticantibacterialAntimicrobialimmunesystempotentialtherapeuticresistancetherapeuticsdesignedPHNXdatabasefilteringtechnologypositionaldatasetlaboratoryestablishconcentrationmethodologyresistantsusceptibleresultscomparedlow-saltGram-positiveevaluatedhemolysissyntheticpresentusepeptideubiquitousamongstlivingorganismspartinnateabilitykillpathogensdirectlyindirectlymodulatingduequick-actingmechanismactionpreventsdevelopingAdditionallydireneedspecificallybacterialinfectionsintrinsicallydifficulttreatwithoutacquireddrugDevelopmentnewantibioticsslowedrecentyearslikefocusneededeighttermedcombinedAPD3assessedtheoreticalfunctionpublishedmachinelearningalgorithmsfinallyvalidatedtestedminimuminhibitoryMIChalf-maximaleffectiveECCLSILaboratory-basedexperimentalcomputationallypredictedactivitiesascertainaccuracytoolsusedPHNX-1highconditionsstrainsPHNX-4-8cytotoxicityhumanredbloodcellsneedsstudysuccessfullydevelopedcreatenarrowspectrumhigherThusBasedfindingsproposeupfrontselectionadditionalstepaddDFTmethoddatasyntheticallyvalidateapproachaimconductfuturestudiesclinicalDesignedPeptidesGram-NegativeBacteriaabinitioantimicrobialpredictionmodels

Similar Articles

Cited By