Deep Learning Classification of Lake Zooplankton.

Sreenath P Kyathanahally, Thomas Hardeman, Ewa Merz, Thea Bulas, Marta Reyes, Peter Isles, Francesco Pomati, Marco Baity-Jesi
Author Information
  1. Sreenath P Kyathanahally: Eawag, Dübendorf, Switzerland.
  2. Thomas Hardeman: Eawag, Dübendorf, Switzerland.
  3. Ewa Merz: Eawag, Dübendorf, Switzerland.
  4. Thea Bulas: Eawag, Dübendorf, Switzerland.
  5. Marta Reyes: Eawag, Dübendorf, Switzerland.
  6. Peter Isles: Eawag, Dübendorf, Switzerland.
  7. Francesco Pomati: Eawag, Dübendorf, Switzerland.
  8. Marco Baity-Jesi: Eawag, Dübendorf, Switzerland.

Abstract

Plankton are effective indicators of environmental change and ecosystem health in freshwater habitats, but collection of plankton data using manual microscopic methods is extremely labor-intensive and expensive. Automated plankton imaging offers a promising way forward to monitor plankton communities with high frequency and accuracy in real-time. Yet, manual annotation of millions of images proposes a serious challenge to taxonomists. Deep learning classifiers have been successfully applied in various fields and provided encouraging results when used to categorize marine plankton images. Here, we present a set of deep learning models developed for the identification of lake plankton, and study several strategies to obtain optimal performances, which lead to operational prescriptions for users. To this aim, we annotated into 35 classes over 17900 images of zooplankton and large phytoplankton colonies, detected in Lake Greifensee (Switzerland) with the Dual Scripps Plankton Camera. Our best models were based on transfer learning and ensembling, which classified plankton images with 98% accuracy and 93% F1 score. When tested on freely available plankton datasets produced by other automated imaging tools (ZooScan, Imaging FlowCytobot, and ISIIS), our models performed better than previously used models. Our annotated data, code and classification models are freely available online.

Keywords

References

  1. Proc Natl Acad Sci U S A. 2019 Jun 25;116(26):12907-12912 [PMID: 31186360]
  2. Science. 2001 Mar 30;291(5513):2594-7 [PMID: 11283369]
  3. Sci Rep. 2019 May 14;9(1):7366 [PMID: 31089175]
  4. BMC Ecol. 2018 Dec 3;18(1):51 [PMID: 30509239]
  5. Sensors (Basel). 2020 May 28;20(11): [PMID: 32481730]
  6. Nature. 2010 Sep 9;467(7312):154-5 [PMID: 20829777]
  7. Nat Rev Microbiol. 2018 Aug;16(8):471-483 [PMID: 29946124]
  8. Mol Ecol. 2017 Nov;26(21):5872-5895 [PMID: 28921802]
  9. J Plankton Res. 2021 Apr 19;43(3):492-496 [PMID: 34084089]
  10. Science. 2009 Feb 13;323(5916):887-8 [PMID: 19213905]
  11. Environ Sci Pollut Res Int. 2021 Jun;28(22):28544-28555 [PMID: 33547607]
  12. Water Res. 2021 Sep 15;203:117524 [PMID: 34418642]
  13. BMC Bioinformatics. 2017 Dec 28;18(Suppl 16):570 [PMID: 29297354]

Word Cloud

Created with Highcharts 10.0.0planktonlearningimagesmodelsPlanktondatamanualimagingaccuracyDeepuseddeeplakeannotatedLakeGreifenseetransferfreelyavailableclassificationeffectiveindicatorsenvironmentalchangeecosystemhealthfreshwaterhabitatscollectionusingmicroscopicmethodsextremelylabor-intensiveexpensiveAutomatedofferspromisingwayforwardmonitorcommunitieshighfrequencyreal-timeYetannotationmillionsproposesseriouschallengetaxonomistsclassifierssuccessfullyappliedvariousfieldsprovidedencouragingresultscategorizemarinepresentsetdevelopedidentificationstudyseveralstrategiesobtainoptimalperformancesleadoperationalprescriptionsusersaim35classes17900zooplanktonlargephytoplanktoncoloniesdetectedSwitzerlandDualScrippsCamerabestbasedensemblingclassified98%93%F1scoretesteddatasetsproducedautomatedtoolsZooScanImagingFlowCytobotISIISperformedbetterpreviouslycodeonlineLearningClassificationZooplanktonensemblefreshwatercamera

Similar Articles

Cited By (4)