How to Prepare Spectral Flow Cytometry Datasets for High Dimensional Data Analysis: A Practical Workflow.

Hannah den Braanker, Margot Bongenaar, Erik Lubberts
Author Information
  1. Hannah den Braanker: Department of Rheumatology, Erasmus University Medical Center, Rotterdam, Netherlands.
  2. Margot Bongenaar: Department of Rheumatology, Erasmus University Medical Center, Rotterdam, Netherlands.
  3. Erik Lubberts: Department of Rheumatology, Erasmus University Medical Center, Rotterdam, Netherlands.

Abstract

Spectral flow cytometry is an upcoming technique that allows for extensive multicolor panels, enabling simultaneous investigation of a large number of cellular parameters in a single experiment. To fully explore the resulting high-dimensional single cell datasets, high-dimensional analysis is needed, as opposed to the common practice of manual gating in conventional flow cytometry. However, preparing spectral flow cytometry data for high-dimensional analysis can be challenging, because of several technical aspects. In this article, we will give insight into the pitfalls of handling spectral flow cytometry datasets. Moreover, we will describe a workflow to properly prepare spectral flow cytometry data for high dimensional analysis and tools for integrating new data at later time points. Using healthy control data as example, we will go through the concepts of quality control, data cleaning, transformation, correcting for batch effects, subsampling, clustering and data integration. This methods article provides an R-based pipeline based on previously published packages, that are readily available to use. Application of our workflow will aid spectral flow cytometry users to obtain valid and reproducible results.

Keywords

References

  1. Bioinformatics. 2016 Aug 15;32(16):2473-80 [PMID: 27153628]
  2. Cytometry A. 2017 Mar;91(3):281-289 [PMID: 28234411]
  3. Immunol Cell Biol. 2021 Aug;99(7):680-696 [PMID: 33797774]
  4. J Immunol. 2021 Jan 1;206(1):206-213 [PMID: 33229441]
  5. Med (N Y). 2021 Jun 11;2(6):755-772.e5 [PMID: 33870241]
  6. Cytometry A. 2020 Oct;97(10):1044-1051 [PMID: 32830910]
  7. Commun Biol. 2019 May 14;2:183 [PMID: 31098416]
  8. Cytometry A. 2020 Mar;97(3):268-278 [PMID: 31633883]
  9. J Immunol. 2018 May 15;200(10):3319-3331 [PMID: 29735643]
  10. BMC Bioinformatics. 2010 Nov 04;11:546 [PMID: 21050468]
  11. Eur J Immunol. 2019 Oct;49(10):1457-1973 [PMID: 31633216]
  12. Comput Struct Biotechnol J. 2018 Oct 24;16:435-442 [PMID: 30450167]
  13. Cytometry A. 2020 Dec 18;: [PMID: 33336868]
  14. Proc Natl Acad Sci U S A. 2014 Jul 1;111(26):E2770-7 [PMID: 24979804]
  15. Curr Protoc Cytom. 2020 Mar;92(1):e70 [PMID: 32150355]
  16. Cytometry A. 2004 Feb;57(2):63-9 [PMID: 14750126]
  17. Nat Rev Immunol. 2016 Jul;16(7):449-62 [PMID: 27320317]
  18. BMC Bioinformatics. 2016 Jul 28;17:291 [PMID: 27465477]
  19. Genome Biol. 2019 Dec 23;20(1):297 [PMID: 31870419]
  20. Cytometry A. 2016 Dec;89(12):1084-1096 [PMID: 27992111]
  21. F1000Res. 2017 May 26;6:748 [PMID: 28663787]
  22. Nat Commun. 2017 Nov 23;8(1):1740 [PMID: 29170529]
  23. Cytometry A. 2021 Sep 22;: [PMID: 34549881]
  24. Nat Biotechnol. 2018 Dec 03;: [PMID: 30531897]
  25. Nat Biotechnol. 2011 Oct 02;29(10):886-91 [PMID: 21964415]
  26. Cytometry A. 2015 Jul;87(7):636-45 [PMID: 25573116]
  27. Cytometry A. 2021 Apr 10;: [PMID: 33840138]
  28. Curr Protoc Cytom. 2010 Jul;Chapter 10:Unit10.17 [PMID: 20578106]
  29. Cytometry A. 2013 May;83(5):508-20 [PMID: 23526804]
  30. Cytometry A. 2018 Nov;93(11):1094-1096 [PMID: 30347136]
  31. Cancer Inform. 2015 Jun 10;13(Suppl 7):111-22 [PMID: 26085786]

MeSH Term

Data Analysis
Datasets as Topic
Flow Cytometry
Humans
Quality Control
Workflow

Word Cloud

Created with Highcharts 10.0.0flowcytometrydataspectralanalysiswillhigh-dimensionalworkflowSpectralsingledatasetsarticlecontrolmethodsupcomingtechniqueallowsextensivemulticolorpanelsenablingsimultaneousinvestigationlargenumbercellularparametersexperimentfullyexploreresultingcellneededopposedcommonpracticemanualgatingconventionalHoweverpreparingcanchallengingseveraltechnicalaspectsgiveinsightpitfallshandlingMoreoverdescribeproperlypreparehighdimensionaltoolsintegratingnewlatertimepointsUsinghealthyexamplegoconceptsqualitycleaningtransformationcorrectingbatcheffectssubsamplingclusteringintegrationprovidesR-basedpipelinebasedpreviouslypublishedpackagesreadilyavailableuseApplicationaidusersobtainvalidreproducibleresultsPrepareFlowCytometryDatasetsHighDimensionalDataAnalysis:PracticalWorkflowR-machinelearning

Similar Articles

Cited By