MCP-1 targeting: Shutting off an engine for tumor development.

Liang Wang, Jinxin Lan, Jiaping Tang, Na Luo
Author Information
  1. Liang Wang: Department of Urology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China.
  2. Jinxin Lan: Department of Anatomy and Histology, School of Medicine, Nankai University, Tianjin 300071, P.R. China.
  3. Jiaping Tang: Department of Anatomy and Histology, School of Medicine, Nankai University, Tianjin 300071, P.R. China.
  4. Na Luo: Department of Anatomy and Histology, School of Medicine, Nankai University, Tianjin 300071, P.R. China.

Abstract

A large amount of research has proven that monocyte chemotactic protein-1 (MCP-1) is associated with different types of disease, including autoimmune, metabolic and cardiovascular diseases. In addition, several studies have found that MCP-1 is associated with tumor development. MCP-1 expression level in the tumor microenvironment is associated with tumor development, including in tumor invasion and metastasis, angiogenesis, and immune cell infiltration. However, the precise mechanism involved is currently being investigated. MCP-1 exerts its effects mainly via the MCP-1/C-C motif chemokine receptor 2 axis and leads to the activation of classical signaling pathways, such as PI3K/Akt/mTOR, ERK/GSK-3β/Snail, c-Raf/MEK/ERK and MAPK in different cells. The specific mechanism is still under debate; however, target therapy utilizing MCP-1 as a neutralizing antibody has been found to have a detrimental effect on tumor development. The aim of the present review was to examine the effect of MCP-1 on tumor development from several aspects, including its structure, its involvement in signaling pathways, the participating cells, and the therapeutic agents targeting MCP-1. The improved understanding into the structure of MCP-1 and the mechanism of action may facilitate new and practical therapeutic agents to achieve maximum performance in the treatment of patients with cancer.

Keywords

References

  1. Toxicol Appl Pharmacol. 2020 Aug 15;401:115092 [PMID: 32512068]
  2. Biochem Pharmacol. 2012 Feb 1;83(3):335-44 [PMID: 22138288]
  3. FEBS Lett. 1989 Feb 27;244(2):487-93 [PMID: 2465924]
  4. J Biol Chem. 2000 Mar 31;275(13):9550-6 [PMID: 10734104]
  5. Neoplasia. 2007 Jul;9(7):556-62 [PMID: 17710158]
  6. J Interferon Cytokine Res. 2002 May;22(5):517-26 [PMID: 12060490]
  7. Vascul Pharmacol. 2016 May;80:20-34 [PMID: 26746853]
  8. Cancer Biol Ther. 2017 Feb;18(2):85-93 [PMID: 28075192]
  9. Anticancer Res. 2015 Jul;35(7):3917-24 [PMID: 26124338]
  10. Cell Rep. 2017 Nov 28;21(9):2471-2486 [PMID: 29186685]
  11. Oncogene. 2020 Feb;39(8):1681-1695 [PMID: 31705064]
  12. Int J Cancer. 2009 Sep 15;125(6):1276-84 [PMID: 19479998]
  13. 3 Biotech. 2021 Jan;11(1):8 [PMID: 33442507]
  14. Angiogenesis. 2012 Mar;15(1):71-85 [PMID: 22210436]
  15. Genomics. 1991 Jan;9(1):200-3 [PMID: 2004761]
  16. Blood. 2000 Jul 1;96(1):34-40 [PMID: 10891427]
  17. J Natl Cancer Inst. 2010 Apr 21;102(8):522-8 [PMID: 20233997]
  18. J Immunol. 2012 Sep 1;189(5):2545-52 [PMID: 22851704]
  19. DNA Cell Biol. 1997 Oct;16(10):1249-56 [PMID: 9364936]
  20. Cancer Res. 2016 Jul 15;76(14):4124-35 [PMID: 27216177]
  21. Clin Exp Metastasis. 2008;25(6):593-600 [PMID: 18286378]
  22. PLoS One. 2014 Jan 08;9(1):e85058 [PMID: 24416340]
  23. Biochemistry. 1999 Oct 5;38(40):13013-25 [PMID: 10529171]
  24. CA Cancer J Clin. 2021 May;71(3):209-249 [PMID: 33538338]
  25. Cytokine Growth Factor Rev. 1999 Mar;10(1):61-86 [PMID: 10379912]
  26. Neoplasia. 2006 Jul;8(7):578-86 [PMID: 16867220]
  27. Nat Commun. 2018 Sep 20;9(1):3826 [PMID: 30237493]
  28. Prostate. 2006 Sep 1;66(12):1311-8 [PMID: 16705739]
  29. Mol Med Rep. 2015 Jul;12(1):20-30 [PMID: 25739039]
  30. Methods. 1996 Aug;10(1):93-103 [PMID: 8812649]
  31. Clin Cancer Res. 2005 Nov 1;11(21):7629-36 [PMID: 16278381]
  32. J Immunol. 1998 Apr 15;160(8):4034-41 [PMID: 9558113]
  33. Cell Mol Immunol. 2017 Jul;14(7):621-630 [PMID: 26996066]
  34. J Hematol Oncol. 2019 Sep 10;12(1):95 [PMID: 31500658]
  35. J Clin Oncol. 2016 Aug 10;34(23):2769-75 [PMID: 27354484]
  36. Am J Pathol. 1991 Jun;138(6):1315-9 [PMID: 2053591]
  37. J Immunol Methods. 1994 Sep 14;174(1-2):249-57 [PMID: 8083529]
  38. Cytokine. 2005 Sep 21;31(6):439-46 [PMID: 16105742]
  39. Onco Targets Ther. 2016 Apr 27;9:2535-45 [PMID: 27175087]
  40. Nature. 2014 Nov 6;515(7525):130-3 [PMID: 25337873]
  41. Blood. 1999 Sep 15;94(6):1899-905 [PMID: 10477718]
  42. Cancer Res. 2016 Oct 1;76(19):5671-5682 [PMID: 27530322]
  43. Nutrients. 2019 Jun 14;11(6): [PMID: 31207928]
  44. Transl Oncol. 2017 Oct;10(5):734-743 [PMID: 28734227]
  45. Clin Cancer Res. 2000 Aug;6(8):3282-9 [PMID: 10955814]
  46. Cancers (Basel). 2020 Dec 11;12(12): [PMID: 33322474]
  47. Mol Med Rep. 2015 Jul;12(1):219-25 [PMID: 25695619]
  48. Int Immunopharmacol. 2002 Jul;2(8):1095-107 [PMID: 12349947]
  49. Annu Rev Pathol. 2011;6:49-69 [PMID: 20887192]
  50. Prostate. 2015 Jul 1;75(10):1009-19 [PMID: 25917126]
  51. Cancer Sci. 2020 Mar;111(3):795-806 [PMID: 31883400]
  52. Science. 2004 Jun 4;304(5676):1497-500 [PMID: 15118125]
  53. Sci Rep. 2019 Jul 31;9(1):11085 [PMID: 31366997]
  54. Mol Cancer Ther. 2017 Feb;16(2):312-322 [PMID: 27980102]
  55. Int Immunol. 2003 Oct;15(10):1219-27 [PMID: 13679391]
  56. Proc Natl Acad Sci U S A. 1989 Mar;86(6):1850-4 [PMID: 2648385]
  57. Breast Cancer Res Treat. 2012 Jun;133(3):1037-48 [PMID: 22160640]
  58. Cancer Res. 2007 Oct 1;67(19):9417-24 [PMID: 17909051]
  59. Nature. 2011 Jun 08;475(7355):222-5 [PMID: 21654748]
  60. Gut. 2017 Jan;66(1):157-167 [PMID: 26452628]
  61. Breast Cancer Res Treat. 2015 Apr;150(2):255-63 [PMID: 25721605]
  62. Oncol Lett. 2016 Sep;12(3):2201-2209 [PMID: 27602164]
  63. Cancer Res. 2015 Jul 15;75(14):2886-96 [PMID: 25977334]
  64. J Interferon Cytokine Res. 2009 Jun;29(6):313-26 [PMID: 19441883]
  65. Cancers (Basel). 2020 Jul 28;12(8): [PMID: 32731354]
  66. Exp Cell Res. 2020 Dec 1;397(1):112311 [PMID: 32991874]
  67. Nat Struct Biol. 1997 Jan;4(1):64-9 [PMID: 8989326]
  68. Cancer Med. 2016 Oct;5(10):2920-2933 [PMID: 27666332]
  69. Biochemistry. 1996 May 28;35(21):6569-84 [PMID: 8639605]
  70. J Immunol. 1994 Oct 15;153(8):3708-16 [PMID: 7523503]
  71. Mol Cancer. 2020 Feb 27;19(1):41 [PMID: 32103760]
  72. Nat Commun. 2016 Jul 06;7:12150 [PMID: 27381735]
  73. Cancer Lett. 2021 Feb 28;499:148-163 [PMID: 33253790]
  74. Int J Cancer. 1990 Apr 15;45(4):795-7 [PMID: 2182547]
  75. World J Surg Oncol. 2018 Feb 20;16(1):34 [PMID: 29458367]
  76. Cancer Res. 2017 Nov 15;77(22):6400-6414 [PMID: 28951461]
  77. Cancer Lett. 2018 Aug 1;428:192-200 [PMID: 29702196]
  78. Immunity. 2018 Oct 16;49(4):595-613 [PMID: 30332628]
  79. Cell Physiol Biochem. 2018;48(3):1332-1346 [PMID: 30048972]
  80. Cytokine. 2017 Oct;98:71-78 [PMID: 28189389]
  81. Am J Respir Cell Mol Biol. 2011 Feb;44(2):230-7 [PMID: 20395632]
  82. Oncotarget. 2016 Jun 21;7(25):37714-37727 [PMID: 27177223]
  83. Int J Mol Sci. 2019 Dec 03;20(23): [PMID: 31816951]
  84. J Immunol. 1989 Mar 15;142(6):1956-62 [PMID: 2921521]
  85. Clin Cancer Res. 2015 Aug 15;21(16):3794-805 [PMID: 25901081]
  86. Cancer Res. 2019 Aug 1;79(15):3903-3915 [PMID: 31189648]
  87. J Exp Clin Cancer Res. 2020 Nov 23;39(1):254 [PMID: 33228783]
  88. Proc Natl Acad Sci U S A. 2014 May 27;111(21):7771-6 [PMID: 24825888]
  89. Oncotarget. 2017 Jun 13;8(24):39230-39240 [PMID: 28424406]
  90. Neoplasia. 2010 May;12(5):425-33 [PMID: 20454514]
  91. Cell Physiol Biochem. 2014;34(2):266-76 [PMID: 25033895]
  92. Front Immunol. 2019 Jul 31;10:1799 [PMID: 31417566]
  93. Autophagy. 2014 Feb;10(2):257-68 [PMID: 24321786]

Word Cloud

Created with Highcharts 10.0.0MCP-1tumordevelopmentassociatedincludingmechanismmonocytechemotacticprotein-1differentseveralfoundsignalingpathwayscellstargettherapyeffectstructuretherapeuticagentslargeamountresearchproventypesdiseaseautoimmunemetaboliccardiovasculardiseasesadditionstudiesexpressionlevelmicroenvironmentinvasionmetastasisangiogenesisimmunecellinfiltrationHoweverpreciseinvolvedcurrentlyinvestigatedexertseffectsmainlyviaMCP-1/C-Cmotifchemokinereceptor2axisleadsactivationclassicalPI3K/Akt/mTORERK/GSK-3β/Snailc-Raf/MEK/ERKMAPKspecificstilldebatehoweverutilizingneutralizingantibodydetrimentalaimpresentreviewexamineaspectsinvolvementparticipatingtargetingimprovedunderstandingactionmayfacilitatenewpracticalachievemaximumperformancetreatmentpatientscancertargeting:Shuttingengine

Similar Articles

Cited By (15)