: a Plethora of Temperate Bacteriophages With a Role in Host Genome Rearrangement.

Antonio J Martín-Galiano, Ernesto García
Author Information
  1. Antonio J Martín-Galiano: Intrahospital Infections Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III (ISCIII), Majadahonda, Spain.
  2. Ernesto García: Departamento de Biotecnología Microbiana y de Plantas, Centro de Investigaciones Biológicas Margarita Salas (CSIC), Madrid, Spain.

Abstract

Bacteriophages (phages) are viruses that infect bacteria. They are the most abundant biological entity on Earth (current estimates suggest there to be perhaps 10 particles) and are found nearly everywhere. Temperate phages can integrate into the chromosome of their host, and prophages have been found in abundance in sequenced bacterial genomes. Prophages may modulate the virulence of their host in different ways, e.g., by the secretion of phage-encoded toxins or by mediating bacterial infectivity. Some 70% of (the pneumococcus)-a frequent cause of otitis media, pneumonia, bacteremia and meningitis-isolates harbor one or more prophages. In the present study, over 4000 genomes were examined for the presence of prophages, and nearly 90% were found to contain at least one prophage, either defective (47%) or present in full (43%). More than 7000 complete putative integrases, either of the tyrosine (6243) or serine (957) families, and 1210 full-sized endolysins (among them 1180 enzymes corresponding to 318 amino acid-long -acetylmuramoyl-L-alanine amidases [LytA]) were found. Based on their integration site, 26 different pneumococcal prophage groups were documented. Prophages coding for tRNAs, putative virulence factors and different methyltransferases were also detected. The members of one group of diverse prophages (PPH090) were found to integrate into the 3' end of the host gene encoding the major autolysin without disrupting it. The great similarity of the and genes (85-92% identity) allowed them to recombine, an apparent integrase-independent mechanism, to produce different DNA rearrangements within the pneumococcal chromosome. This study provides a complete dataset that can be used to further analyze pneumococcal prophages, their evolutionary relationships, and their role in the pathogenesis of pneumococcal disease.

Keywords

References

  1. Microbiology (Reading). 1995 Feb;141 ( Pt 2):291-7 [PMID: 7704257]
  2. Microb Drug Resist. 2003 Spring;9(1):7-15 [PMID: 12705678]
  3. Proc Natl Acad Sci U S A. 1968 Sep;61(1):114-21 [PMID: 4880604]
  4. Mol Med Rep. 2016 Mar;13(3):2871-7 [PMID: 26821177]
  5. Viruses. 2019 Feb 21;11(2): [PMID: 30795514]
  6. J Clin Microbiol. 2011 Jan;49(1):111-7 [PMID: 21048011]
  7. mBio. 2015 Jun 16;6(3):e00173 [PMID: 26081630]
  8. Appl Environ Microbiol. 2009 Mar;75(6):1642-9 [PMID: 19168661]
  9. J Gen Virol. 1969 Jun;4(4):489-504 [PMID: 4979518]
  10. PLoS Comput Biol. 2020 Dec 4;16(12):e1008482 [PMID: 33275597]
  11. Front Immunol. 2018 Oct 16;9:2252 [PMID: 30459750]
  12. Nucleic Acids Res. 2002 Feb 15;30(4):866-75 [PMID: 11842097]
  13. Bacteriol Rev. 1953 Dec;17(4):269-337 [PMID: 13105613]
  14. Front Microbiol. 2019 Feb 25;10:317 [PMID: 30858837]
  15. Bioinformatics. 2019 Aug 15;35(16):2856-2858 [PMID: 30615063]
  16. Sci Rep. 2017 Feb 20;7:42976 [PMID: 28218261]
  17. Nucleic Acids Res. 2005 Jul 1;33(Web Server issue):W686-9 [PMID: 15980563]
  18. Nucleic Acids Res. 2020 Jan 8;48(D1):D265-D268 [PMID: 31777944]
  19. Nucleic Acids Res. 2021 Mar 18;49(5):2655-2673 [PMID: 33590101]
  20. Microbiol Mol Biol Rev. 2003 Jun;67(2):238-76, table of contents [PMID: 12794192]
  21. FEMS Microbiol Lett. 1996 Dec 1;145(2):147-56 [PMID: 8961550]
  22. BMC Microbiol. 2010 Jul 12;10:190 [PMID: 20624274]
  23. FEBS Lett. 2006 Apr 3;580(8):1959-64 [PMID: 16530188]
  24. Nucleic Acids Res. 2000 Jan 1;28(1):292 [PMID: 10592250]
  25. J Mol Biol. 1975 Apr 25;93(4):415-29 [PMID: 1095763]
  26. J Virol. 2000 Sep;74(17):7803-13 [PMID: 10933687]
  27. mBio. 2014 Jul 22;5(4):e01490-14 [PMID: 25053789]
  28. Antibiotics (Basel). 2021 Aug 18;10(8): [PMID: 34439050]
  29. J Bacteriol. 2020 Apr 9;202(9): [PMID: 32071093]
  30. Infect Immun. 1999 Sep;67(9):4551-6 [PMID: 10456899]
  31. Front Microbiol. 2020 May 13;11:728 [PMID: 32477282]
  32. Front Microbiol. 2020 Feb 27;11:309 [PMID: 32174903]
  33. Annu Rev Virol. 2021 Sep 29;8(1):415-435 [PMID: 34014761]
  34. PLoS Genet. 2015 Jul 31;11(7):e1005413 [PMID: 26230489]
  35. J Bacteriol. 1981 Oct;148(1):101-8 [PMID: 6270056]
  36. Appl Environ Microbiol. 2013 Dec;79(24):7547-55 [PMID: 24123737]
  37. J Bacteriol. 2019 Sep 6;201(19): [PMID: 31285240]
  38. Genome Res. 2007 Oct;17(10):1486-95 [PMID: 17785533]
  39. Nucleic Acids Res. 2018 Nov 2;46(19):9971-9989 [PMID: 30107613]
  40. Infect Immun. 2015 Feb;83(2):591-603 [PMID: 25404032]
  41. Microbiology (Reading). 1998 Nov;144 ( Pt 11):3049-3060 [PMID: 9846740]
  42. J Bacteriol. 2010 May;192(10):2624-32 [PMID: 20304992]
  43. Cell Host Microbe. 2019 Feb 13;25(2):184-194 [PMID: 30763533]
  44. Bacteriophage. 2016 Aug 5;6(3):e1219441 [PMID: 27738556]
  45. ISME J. 2016 Nov;10(11):2744-2754 [PMID: 27015004]
  46. FEMS Microbiol Rev. 2004 Nov;28(5):553-80 [PMID: 15539074]
  47. RNA Biol. 2014;11(5):443-56 [PMID: 24576839]
  48. Clin Infect Dis. 2019 Jan 1;68(1):61-69 [PMID: 29788414]
  49. Antibiotics (Basel). 2016 Jun 14;5(2): [PMID: 27314398]
  50. PLoS Pathog. 2015 Apr 15;11(4):e1004835 [PMID: 25876066]
  51. Gene. 1990 May 31;90(1):157-62 [PMID: 1974230]
  52. Acta Crystallogr D Biol Crystallogr. 2015 Jun;71(Pt 6):1373-81 [PMID: 26057677]
  53. Antimicrob Agents Chemother. 2013 Nov;57(11):5737-9 [PMID: 23979742]
  54. Infect Immun. 2016 Jan 11;84(3):822-32 [PMID: 26755156]
  55. Genome Biol. 2000;1(6):REVIEWS0006 [PMID: 11380986]
  56. Nat Commun. 2019 Oct 24;10(1):4852 [PMID: 31649284]
  57. Elife. 2017 Jul 25;6: [PMID: 28742023]
  58. FEMS Microbiol Rev. 2021 Jan 8;45(1): [PMID: 32897318]
  59. Genome Biol Evol. 2015 Sep 08;7(9):2747-61 [PMID: 26349755]
  60. Biotechnol Rep (Amst). 2020 Oct 24;28:e00547 [PMID: 33204659]
  61. PLoS Biol. 2016 Mar 02;14(3):e1002394 [PMID: 26934590]
  62. Protein Sci. 1999 Mar;8(3):538-44 [PMID: 10091656]
  63. mSphere. 2016 Mar 09;1(2): [PMID: 27303717]
  64. PLoS One. 2016 Aug 09;11(8):e0160554 [PMID: 27505001]
  65. J Antimicrob Chemother. 2018 Nov 1;73(11):2941-2951 [PMID: 30165641]
  66. PLoS Pathog. 2014 May 15;10(5):e1004109 [PMID: 24831957]
  67. mBio. 2017 Jan 17;8(1): [PMID: 28096486]
  68. Vaccines (Basel). 2021 Feb 23;9(2): [PMID: 33672306]
  69. Methods Mol Biol. 2021;2231:3-16 [PMID: 33289883]
  70. Infect Immun. 2006 Aug;74(8):4486-95 [PMID: 16861634]
  71. J Bacteriol. 1999 Jun;181(12):3618-25 [PMID: 10368133]
  72. Cell Host Microbe. 2012 Aug 16;12(2):177-86 [PMID: 22901538]
  73. PLoS One. 2019 Oct 2;14(10):e0223364 [PMID: 31577829]
  74. J Bacteriol. 1990 Sep;172(9):5064-70 [PMID: 1975580]
  75. Nucleic Acids Res. 2016 Jul 8;44(W1):W16-21 [PMID: 27141966]
  76. PLoS Pathog. 2021 Apr 29;17(4):e1009073 [PMID: 33914852]
  77. BMC Genomics. 2015 Nov 18;16:972 [PMID: 26582495]
  78. J Bacteriol. 2019 Jun 21;201(14): [PMID: 30833353]
  79. PLoS One. 2014 Apr 09;9(4):e94358 [PMID: 24718595]
  80. Structure. 2003 Oct;11(10):1239-49 [PMID: 14527392]
  81. Mol Microbiol. 2004 Jul;53(1):9-18 [PMID: 15225299]
  82. J Bacteriol. 2003 Nov;185(21):6434-47 [PMID: 14563879]
  83. Front Microbiol. 2019 Feb 08;10:205 [PMID: 30800118]
  84. Nucleic Acids Res. 2010 Sep;38(17):5817-32 [PMID: 20462863]
  85. J Virol. 1996 Jun;70(6):3678-87 [PMID: 8648702]
  86. Mol Microbiol. 1998 Jul;29(2):527-43 [PMID: 9720870]
  87. EBioMedicine. 2019 May;43:338-346 [PMID: 31003929]
  88. FEMS Microbiol Lett. 2018 Jun 1;365(11): [PMID: 29790984]
  89. Gene. 1985;34(2-3):335-42 [PMID: 3924741]
  90. Nucleic Acids Res. 2004 Jan 02;32(1):11-6 [PMID: 14704338]
  91. Lancet Infect Dis. 2018 Nov;18(11):1191-1210 [PMID: 30243584]
  92. Crit Rev Biochem Mol Biol. 2013 Sep-Oct;48(5):476-91 [PMID: 23980849]
  93. Int J Mol Sci. 2021 Aug 19;22(16): [PMID: 34445641]
  94. Proc Natl Acad Sci U S A. 2017 Jan 17;114(3):E357-E366 [PMID: 28053228]
  95. Science. 1977 Jan 7;195(4273):66-8 [PMID: 12565]
  96. Microbiol Mol Biol Rev. 2013 Mar;77(1):53-72 [PMID: 23471617]
  97. Biochemistry. 1998 Oct 20;37(42):14736-47 [PMID: 9778348]
  98. PLoS One. 2015 Feb 18;10(2):e0118807 [PMID: 25692983]
  99. Pharmaceuticals (Basel). 2020 Dec 19;13(12): [PMID: 33352708]
  100. Viruses. 2021 Apr 15;13(4): [PMID: 33920965]
  101. Proc Natl Acad Sci U S A. 2014 Aug 19;111(33):12127-32 [PMID: 25092302]
  102. FEMS Microbiol Lett. 1998 Jul 1;164(1):207-14 [PMID: 9675866]
  103. Infect Immun. 2001 Oct;69(10):6186-92 [PMID: 11553559]
  104. Front Genet. 2018 Dec 18;9:644 [PMID: 30619469]
  105. J Mol Biol. 2004 Jan 16;335(3):667-78 [PMID: 14687564]
  106. J Biol Chem. 1997 Dec 5;272(49):30860-5 [PMID: 9388231]
  107. Sci Rep. 2015 Jul 21;5:12265 [PMID: 26193794]
  108. Genetics. 2003 Aug;164(4):1279-89 [PMID: 12930739]
  109. BMC Biol. 2014 Jun 23;12:49 [PMID: 24957517]
  110. J Infect Dis. 1995 Jul;172(1):119-23 [PMID: 7797901]
  111. Drug Resist Updat. 2016 Jul;27:30-8 [PMID: 27449596]
  112. PLoS Pathog. 2016 Mar 14;12(3):e1005500 [PMID: 26975045]
  113. mBio. 2014 Feb 11;5(1):e01120-13 [PMID: 24520066]
  114. Genome Announc. 2017 Jul 13;5(28): [PMID: 28705957]
  115. BMC Bioinformatics. 2010 Mar 08;11:119 [PMID: 20211023]
  116. Mol Microbiol. 2003 Jul;49(2):277-300 [PMID: 12886937]
  117. J Clin Microbiol. 2001 Jul;39(7):2565-71 [PMID: 11427569]
  118. J Bacteriol. 2003 Apr;185(7):2362-8 [PMID: 12644508]
  119. PLoS One. 2015 Apr 30;10(4):e0125636 [PMID: 25927917]
  120. Proc Natl Acad Sci U S A. 2011 Mar 15;108 Suppl 1:4547-53 [PMID: 20547834]
  121. Expert Rev Vaccines. 2019 Nov;18(11):1145-1155 [PMID: 31682762]
  122. Vaccines (Basel). 2020 Mar 17;8(1): [PMID: 32192117]
  123. Nat Rev Microbiol. 2010 May;8(5):317-27 [PMID: 20348932]
  124. Nucleic Acids Res. 2016 Jan 4;44(D1):D733-45 [PMID: 26553804]
  125. J Mol Biol. 2011 Jul 1;410(1):18-26 [PMID: 21570408]
  126. Structure. 2008 Aug 6;16(8):1275-86 [PMID: 18682229]
  127. Viruses. 2021 May 28;13(6): [PMID: 34071422]
  128. Nucleic Acids Res. 2008 Jul 1;36(Web Server issue):W5-9 [PMID: 18440982]
  129. Emerg Infect Dis. 2017 Jun;23(6):1012-1015 [PMID: 28518018]
  130. Wellcome Open Res. 2018 Sep 24;3:124 [PMID: 30345391]
  131. Antimicrob Agents Chemother. 2011 Sep;55(9):4144-8 [PMID: 21746941]
  132. Annu Rev Microbiol. 2017 Sep 8;71:233-261 [PMID: 28657885]
  133. Antimicrob Agents Chemother. 2020 Jan 27;64(2): [PMID: 31767724]
  134. Nucleic Acids Res. 2014 Jan;42(1):56-69 [PMID: 23990325]
  135. J Bacteriol. 2009 Aug;191(15):4854-62 [PMID: 19502408]
  136. Science. 2011 Jan 28;331(6016):430-4 [PMID: 21273480]
  137. Microbiology (Reading). 2015 Jan;161(Pt 1):41-49 [PMID: 25355938]
  138. Microorganisms. 2020 Oct 07;8(10): [PMID: 33036379]
  139. J Clin Microbiol. 2012 Apr;50(4):1355-61 [PMID: 22238442]
  140. PLoS One. 2010 Dec 20;5(12):e15678 [PMID: 21187931]
  141. Microbiol Spectr. 2019 Jan;7(1): [PMID: 30737916]

MeSH Term

Bacteriophages
Genome, Bacterial
Genome, Viral
N-Acetylmuramoyl-L-alanine Amidase
Prophages
Streptococcus pneumoniae

Chemicals

N-Acetylmuramoyl-L-alanine Amidase

Word Cloud

Created with Highcharts 10.0.0foundprophagesdifferentpneumococcalhostvirulenceoneprophageBacteriophagesphagesnearlyTemperatecanintegratechromosomebacterialgenomesProphagespresentstudyeithercompleteputativeenzymestRNAsfactorsrearrangementsvirusesinfectbacteriaabundantbiologicalentityEarthcurrentestimatessuggestperhaps10particleseverywhereabundancesequencedmaymodulatewaysegsecretionphage-encodedtoxinsmediatinginfectivity70%pneumococcus-afrequentcauseotitismediapneumoniabacteremiameningitis-isolatesharbor4000examinedpresence90%containleastdefective47%full43%7000integrasestyrosine6243serine957families1210full-sizedendolysinsamong1180corresponding318aminoacid-long-acetylmuramoyl-L-alanineamidases[LytA]Basedintegrationsite26groupsdocumentedcodingmethyltransferasesalsodetectedmembersgroupdiversePPH0903'endgeneencodingmajorautolysinwithoutdisruptinggreatsimilaritygenes85-92%identityallowedrecombineapparentintegrase-independentmechanismproduceDNAwithinprovidesdatasetusedanalyzeevolutionaryrelationshipsrolepathogenesisdisease:PlethoraRoleHostGenomeRearrangementStreptococcuspneumoniaeendolysingenomicintegraselytic

Similar Articles

Cited By