No-boundary thinking: a viable solution to ethical data-driven AI in precision medicine.

Tayo Obafemi-Ajayi, Andy Perkins, Bindu Nanduri, Donald C Wunsch Ii, James A Foster, Joan Peckham
Author Information
  1. Tayo Obafemi-Ajayi: Engineering Program, Missouri State University, Springfield, MO USA. ORCID
  2. Andy Perkins: Department of Computer Science and Engineering, Mississippi State University, Starkville, MS USA.
  3. Bindu Nanduri: Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Starkville, MS USA.
  4. Donald C Wunsch Ii: Electrical & Computer Engineering Department, Missouri University of Science and Technology, Rolla, MO USA.
  5. James A Foster: Biological Sciences Department, University of Idaho, Moscow, ID USA.
  6. Joan Peckham: Computer Science & Statistics Department, University of Rhode Island, Kingston, RI USA.

Abstract

Today Artificial Intelligence (AI) supports difficult decisions about policy, health, and our personal lives. The AI algorithms we develop and deploy to make sense of information, are informed by data, and based on models that capture and use pertinent details of the population or phenomenon being analyzed. For any application area, more importantly in precision medicine which directly impacts human lives, the data upon which algorithms are run must be procured, cleaned, and organized well to assure reliable and interpretable results, and to assure that they do not perpetrate or amplify human prejudices. This must be done without violating basic assumptions of the algorithms in use. Algorithmic results need to be clearly communicated to stakeholders and domain experts to enable sound conclusions. Our position is that AI holds great promise for supporting precision medicine, but we need to move forward with great care, with consideration for possible ethical implications. We make the case that a no-boundary or convergent approach is essential to support sound and ethical decisions. No-boundary thinking supports problem definition and solving with teams of experts possessing diverse perspectives. When dealing with AI and the data needed to use AI, there is a spectrum of activities that needs the attention of a no-boundary team. This is necessary if we are to draw viable conclusions and develop actions and policies based on the AI, the data, and the scientific foundations of the domain in question.

Keywords

References

  1. Proc Natl Acad Sci U S A. 2014 Sep 16;111 Suppl 4:13614-20 [PMID: 25225368]
  2. Cancers (Basel). 2020 Nov 26;12(12): [PMID: 33256107]
  3. BMC Med Inform Decis Mak. 2018 Dec 29;18(1):139 [PMID: 30594159]
  4. Lancet Digit Health. 2021 Mar;3(3):e144-e146 [PMID: 33549513]
  5. BioData Min. 2015 Feb 06;8:7 [PMID: 25670967]
  6. Neurogenetics. 2018 May;19(2):105-110 [PMID: 29589152]
  7. NPJ Digit Med. 2019 Nov 21;2:112 [PMID: 31799421]
  8. Front Med (Lausanne). 2019 Mar 01;6:34 [PMID: 30881956]
  9. Front Psychol. 2021 Jan 05;11:513474 [PMID: 33584394]
  10. Nature. 2015 Oct 15;526(7573):336-42 [PMID: 26469044]
  11. Pac Symp Biocomput. 2016;22:646-648 [PMID: 27897015]
  12. JAMA. 2019 Dec 24;322(24):2377-2378 [PMID: 31755905]
  13. Hum Genet. 2019 Feb;138(2):109-124 [PMID: 30671672]
  14. Proc Natl Acad Sci U S A. 2020 Feb 11;117(6):3053-3062 [PMID: 31980526]
  15. Science. 2019 Oct 25;366(6464):447-453 [PMID: 31649194]
  16. J Law Biosci. 2019 May 14;6(1):1-36 [PMID: 31666963]
  17. Cancer Cell. 2021 Jan 11;39(1):3-6 [PMID: 32976776]
  18. Nat Med. 2021 Jan;27(1):136-140 [PMID: 33442014]
  19. Int J Biostat. 2010 Feb 26;6(2):Article 7 [PMID: 20305706]
  20. Am J Respir Crit Care Med. 2012 Oct 1;186(7):593-7 [PMID: 22723294]
  21. BMJ. 2021 Mar 15;372:n304 [PMID: 33722847]
  22. PLoS One. 2015 Sep 23;10(9):e0138511 [PMID: 26398658]
  23. Science. 2004 Jun 4;304(5676):1497-500 [PMID: 15118125]
  24. AI Ethics. 2021;1(1):61-65 [PMID: 38624388]
  25. BioData Min. 2013 Nov 06;6(1):19 [PMID: 24192339]
  26. Biomolecules. 2019 Dec 30;10(1): [PMID: 31905969]
  27. Genet Med. 2016 Jul;18(7):678-85 [PMID: 26633545]
  28. Nat Med. 2019 Sep;25(9):1337-1340 [PMID: 31427808]

Grants

  1. P20 GM103646/NIGMS NIH HHS