Prediction of post transarterial chemoembolization MR images of hepatocellular carcinoma using spatio-temporal graph convolutional networks.

Andrei Svecic, Rihab Mansour, An Tang, Samuel Kadoury
Author Information
  1. Andrei Svecic: Department of Computer Engineering, MedICAL, Polytechnique Montréal, Montréal, Québec, Canada.
  2. Rihab Mansour: CHUM Research Center, Montréal, Québec, Canada.
  3. An Tang: CHUM Research Center, Montréal, Québec, Canada.
  4. Samuel Kadoury: Department of Computer Engineering, MedICAL, Polytechnique Montréal, Montréal, Québec, Canada. ORCID

Abstract

Magnetic resonance imaging (MRI) plays a critical role in the planning and monitoring of hepatocellular carcinomas (HCC) treated with locoregional therapies, in order to assess disease progression or recurrence. Dynamic contrast-enhanced (DCE)-MRI sequences offer temporal data on tumor enhancement characteristics which has strong prognostic value. Yet, predicting follow-up DCE-MR images from which tumor enhancement and viability can be measured, before treatment of HCC actually begins, remains an unsolved problem given the complexity of spatial and temporal information. We propose an approach to predict future DCE-MRI examinations following transarterial chemoembolization (TACE) by learning the spatio-temporal features related to HCC response from pre-TACE images. A novel Spatial-Temporal Discriminant Graph Neural Network (STDGNN) based on graph convolutional networks is presented. First, embeddings of viable, equivocal and non-viable HCCs are separated within a joint low-dimensional latent space, which is created using a discriminant neural network representing tumor-specific features. Spatial tumoral features from independent MRI volumes are then extracted with a structural branch, while dynamic features are extracted from the multi-phase sequence with a separate temporal branch. The model extracts spatio-temporal features by a joint minimization of the network branches. At testing, a pre-TACE diagnostic DCE-MRI is embedded on the discriminant spatio-temporal latent space, which is then translated to the follow-up domain space, thus allowing to predict the post-TACE DCE-MRI describing HCC treatment response. A dataset of 366 HCC's from liver cancer patients was used to train and test the model using DCE-MRI examinations with associated pathological outcomes, with the spatio-temporal framework yielding 93.5% classification accuracy in response identification, and generating follow-up images yielding insignificant differences in perfusion parameters compared to ground-truth post-TACE examinations.

References

  1. J Vasc Interv Radiol. 2018 Jun;29(6):850-857.e1 [PMID: 29548875]
  2. Radiology. 2015 Sep;276(3):883-93 [PMID: 25897473]
  3. Breast Cancer Res. 2017 May 18;19(1):57 [PMID: 28521821]
  4. Insights Imaging. 2019 Dec 18;10(1):121 [PMID: 31853668]
  5. Clin Cancer Res. 2016 Nov 1;22(21):5256-5264 [PMID: 27185368]
  6. Eur Radiol. 2020 Jan;30(1):413-424 [PMID: 31332558]
  7. Inf Process Med Imaging. 2015;24:588-99 [PMID: 26221705]
  8. Magn Reson Med. 2005 Apr;53(4):981-5 [PMID: 15799044]
  9. J Digit Imaging. 2020 Aug;33(4):937-945 [PMID: 32193665]
  10. Clin Cancer Res. 2019 Jun 15;25(12):3538-3547 [PMID: 30842125]
  11. Eur Radiol. 2020 Apr;30(4):2365-2376 [PMID: 31900703]
  12. World J Gastroenterol. 2010 Jul 7;16(25):3161-7 [PMID: 20593501]
  13. Sci Rep. 2015 Aug 17;5:13087 [PMID: 26278466]
  14. Eur Radiol. 2019 Jan;29(1):458-467 [PMID: 29922934]
  15. Ann Oncol. 2013 Apr;24(4):965-73 [PMID: 23223331]
  16. Abdom Radiol (NY). 2021 Jan;46(1):111-123 [PMID: 31925492]
  17. Insights Imaging. 2013 Apr;4(2):163-75 [PMID: 23359240]
  18. Magn Reson Imaging. 2019 Oct;62:78-86 [PMID: 31247250]
  19. Thorac Cancer. 2020 Mar;11(3):651-658 [PMID: 31944571]
  20. Eur J Radiol. 2013 Apr;82(4):577-82 [PMID: 23246330]
  21. Eur Radiol. 2021 Jun;31(6):4367-4376 [PMID: 33274405]
  22. Nat Rev Gastroenterol Hepatol. 2020 Mar;17(3):139-152 [PMID: 31792430]
  23. Int J Comput Assist Radiol Surg. 2019 Sep;14(9):1565-1575 [PMID: 31359258]
  24. Med Image Anal. 2008 Feb;12(1):26-41 [PMID: 17659998]
  25. Acad Radiol. 2019 Apr;26(4):469-479 [PMID: 30072293]

Grants

  1. MOP-142401/CIHR

MeSH Term

Aged
Carcinoma, Hepatocellular
Chemoembolization, Therapeutic
Female
Humans
Liver Neoplasms
Magnetic Resonance Imaging
Male
Middle Aged
Radiographic Image Interpretation, Computer-Assisted
Spatio-Temporal Analysis
Treatment Outcome

Word Cloud

Created with Highcharts 10.0.0spatio-temporalfeaturesHCCimagesDCE-MRItemporalfollow-upexaminationsresponsespaceusingMRIhepatocellulartumorenhancementtreatmentpredicttransarterialchemoembolizationpre-TACEgraphconvolutionalnetworksjointlatentdiscriminantnetworkextractedbranchmodelpost-TACEyieldingMagneticresonanceimagingplayscriticalroleplanningmonitoringcarcinomastreatedlocoregionaltherapiesorderassessdiseaseprogressionrecurrenceDynamiccontrast-enhancedDCE-MRIsequencesofferdatacharacteristicsstrongprognosticvalueYetpredictingDCE-MRviabilitycanmeasuredactuallybeginsremainsunsolvedproblemgivencomplexityspatialinformationproposeapproachfuturefollowingTACElearningrelatednovelSpatial-TemporalDiscriminantGraphNeuralNetworkSTDGNNbasedpresentedFirstembeddingsviableequivocalnon-viableHCCsseparatedwithinlow-dimensionalcreatedneuralrepresentingtumor-specificSpatialtumoralindependentvolumesstructuraldynamicmulti-phasesequenceseparateextractsminimizationbranchestestingdiagnosticembeddedtranslateddomainthusallowingdescribingdataset366HCC'slivercancerpatientsusedtraintestassociatedpathologicaloutcomesframework935%classificationaccuracyidentificationgeneratinginsignificantdifferencesperfusionparameterscomparedground-truthPredictionpostMRcarcinoma

Similar Articles

Cited By