Genetic Determinants in Salmonella enterica Serotype Typhimurium Required for Overcoming Stressors in the Mimicking Host Environment.

Rabindra K Mandal, Tieshan Jiang, Young Min Kwon
Author Information
  1. Rabindra K Mandal: Center of Excellence for Poultry Science, University of Arkansas System Division of Agriculture, Fayetteville, Arkansas, USA. ORCID
  2. Tieshan Jiang: Center of Excellence for Poultry Science, University of Arkansas System Division of Agriculture, Fayetteville, Arkansas, USA.
  3. Young Min Kwon: Center of Excellence for Poultry Science, University of Arkansas System Division of Agriculture, Fayetteville, Arkansas, USA. ORCID

Abstract

Salmonella enterica serotype Typhimurium, a nontyphoidal Salmonella (NTS), results in a range of enteric diseases, representing a major disease burden worldwide. There is still a significant portion of Salmonella genes whose mechanistic basis to overcome host innate defense mechanisms largely remains unknown. Here, we have applied transposon insertion sequencing (Tn-seq) method to unveil the genetic factors required for the growth or survival of Typhimurium under various host stressors simulated . A highly saturating Tn5 library of Typhimurium 14028s was subjected to selection during growth in the presence of short-chain fatty acid (100���mM propionate), osmotic stress (3% NaCl), or oxidative stress (1���mM HO) or survival in extreme acidic pH (30���min in pH 3) or starvation (12���days in 1�� phosphate-buffered saline [PBS]). We have identified a total of 339 conditionally essential genes (CEGs) required to overcome at least one of these conditions mimicking host insults. Interestingly, all eight genes encoding FF-ATP synthase subunit proteins were required for fitness in all five stresses. Intriguingly, a total of 88 genes in Salmonella pathogenicity islands (SPI), including SPI-1, SPI-2, SPI-3, SPI-5, SPI-6, and SPI-11, are also required for fitness under the conditions. Additionally, by comparative analysis of the genes identified in this study and the genes previously shown to be required for fitness, we identified novel genes (, , , , , , and the genes encoding putative proteins STM14_1138, STM14_3334, STM14_4825, and STM_5184) that have compelling potential for the development of vaccines and antibacterial drugs to curb Salmonella infection. Salmonella enterica serotype Typhimurium is a major human bacterial pathogen that enters the food chain through meat animals asymptomatically carrying this pathogen. Despite the rich genome sequence data, a significant portion of Salmonella genes remain to be characterized for their potential contributions to virulence. In this study, we used transposon insertion sequencing (Tn-seq) to elucidate the genetic factors required for growth or survival under various host stressors, including short-chain fatty acids, osmotic stress, oxidative stress, extreme acid, and starvation. Among the total of 339 conditionally essential genes (CEGs) that are required under at least one of these five stress conditions were 221 previously known virulence genes required for fitness during infection in at least one of four animal species, including mice, chickens, pigs, and cattle. This comprehensive map of virulence phenotype-genotype in Typhimurium provides a roadmap for further interrogation of the biological functions encoded by the genome of this important human pathogen to survive in hostile host environments.

Keywords

References

  1. J Bacteriol. 2002 Oct;184(19):5502-7 [PMID: 12218039]
  2. Nucleic Acids Res. 2013 Apr;41(8):4549-64 [PMID: 23470992]
  3. Clin Microbiol Rev. 2004 Jan;17(1):14-56 [PMID: 14726454]
  4. Bioinformatics. 2011 Sep 1;27(17):2429-30 [PMID: 21765097]
  5. Proc Natl Acad Sci U S A. 1999 Sep 28;96(20):11578-83 [PMID: 10500219]
  6. Proc Natl Acad Sci U S A. 2015 Jan 13;112(2):560-5 [PMID: 25548165]
  7. J Bacteriol. 2006 Aug;188(15):5450-9 [PMID: 16855234]
  8. Proc Natl Acad Sci U S A. 2011 Aug 2;108(31):12875-80 [PMID: 21768388]
  9. Mol Microbiol. 2005 Jul;57(1):196-211 [PMID: 15948960]
  10. Nature. 2001 Oct 25;413(6858):852-6 [PMID: 11677609]
  11. Infect Immun. 2005 Sep;73(9):5438-49 [PMID: 16113260]
  12. Mol Microbiol. 2012 Oct;86(1):96-110 [PMID: 22812494]
  13. PLoS One. 2015 May 19;10(5):e0128092 [PMID: 25993347]
  14. Microb Cell Fact. 2008 Dec 02;7:35 [PMID: 19055729]
  15. J Biol Chem. 2011 Jan 28;286(4):2807-16 [PMID: 21087930]
  16. PLoS Genet. 2011 Jun;7(6):e1001393 [PMID: 21695224]
  17. Emerg Infect Dis. 2015 Jun;21(6): [PMID: 25860298]
  18. J Bacteriol. 2006 Nov;188(22):7722-30 [PMID: 17079680]
  19. Int J Microbiol. 2014;2014:873081 [PMID: 25057269]
  20. Infect Immun. 2015 Jul;83(7):2738-50 [PMID: 25916986]
  21. Int J Food Microbiol. 1998 May 26;41(2):103-25 [PMID: 9704860]
  22. Nat Rev Microbiol. 2006 May;4(5):383-94 [PMID: 16715050]
  23. J Chem Biol. 2010 May 14;3(4):165-73 [PMID: 21572503]
  24. Annu Rev Microbiol. 2006;60:131-47 [PMID: 16704339]
  25. Appl Microbiol Biotechnol. 2016 Jan;100(1):31-43 [PMID: 26476650]
  26. Pol J Microbiol. 2009;58(4):307-17 [PMID: 20380141]
  27. Mol Microbiol. 2000 Jun;36(5):1015-23 [PMID: 10844687]
  28. BMC Genomics. 2017 Aug 14;18(1):616 [PMID: 28806924]
  29. Front Microbiol. 2016 Jan 05;6:1455 [PMID: 26779130]
  30. Nat Genet. 2009 Feb;41(2):166-7 [PMID: 19169256]
  31. Nucleic Acids Res. 2008 Jan;36(Database issue):D250-4 [PMID: 17942413]
  32. Proc Natl Acad Sci U S A. 1993 Nov 1;90(21):9877-81 [PMID: 8234329]
  33. Biochem Biophys Res Commun. 2011 Jul 15;410(4):846-51 [PMID: 21703240]
  34. Nat Rev Microbiol. 2011 May;9(5):330-43 [PMID: 21464825]
  35. Vaccine. 2012 Mar 9;30(12):2090-7 [PMID: 22300724]
  36. J Bacteriol. 2009 Nov;191(21):6665-74 [PMID: 19717586]
  37. Mol Biotechnol. 2014 Nov;56(11):1004-10 [PMID: 24973023]
  38. PLoS Genet. 2013 Apr;9(4):e1003456 [PMID: 23637626]
  39. Front Mol Biosci. 2016 Aug 17;3:41 [PMID: 27583250]
  40. J Bacteriol. 2005 Aug;187(16):5723-31 [PMID: 16077119]
  41. Methods Mol Biol. 2019;2016:3-15 [PMID: 31197704]
  42. Nature. 2009 Jul 9;460(7252):220-4 [PMID: 19536156]
  43. Infect Immun. 2001 Dec;69(12):7197-204 [PMID: 11705888]
  44. Helicobacter. 2013 Oct;18(5):363-72 [PMID: 23600974]
  45. Lancet. 2012 Jun 30;379(9835):2489-2499 [PMID: 22587967]
  46. BMC Microbiol. 2011 Sep 22;11:207 [PMID: 21939540]
  47. Mol Microbiol. 2012 Oct;86(1):212-24 [PMID: 22857388]
  48. Microbiol Mol Biol Rev. 2003 Sep;67(3):429-53, table of contents [PMID: 12966143]
  49. Nucleic Acids Res. 2012 Aug;40(15):e115 [PMID: 22730293]
  50. Front Microbiol. 2017 Sep 08;8:1723 [PMID: 28943871]
  51. Mol Microbiol. 2004 Mar;51(6):1729-44 [PMID: 15009898]
  52. Sci Rep. 2017 Dec 6;7(1):17073 [PMID: 29213059]
  53. Avian Pathol. 2016 Oct;45(5):569-75 [PMID: 27163262]
  54. J Bacteriol. 1995 Sep;177(17):5040-7 [PMID: 7665482]
  55. J Antibiot (Tokyo). 2012 Apr;65(4):185-92 [PMID: 22318332]
  56. J Bacteriol. 2013 May;195(9):1912-9 [PMID: 23417489]
  57. Curr Protoc Microbiol. 2015 Feb 02;36:1E.3.1-1E.3.24 [PMID: 25641100]
  58. BMC Immunol. 2011 Aug 26;12:49 [PMID: 21871085]
  59. FEMS Microbiol Rev. 2002 Mar;26(1):49-71 [PMID: 12007642]
  60. Microb Pathog. 1986 Jun;1(3):289-97 [PMID: 2469931]
  61. Biochim Biophys Acta. 2014 Jul;1837(7):1208-18 [PMID: 24513197]
  62. Mol Microbiol. 2005 Oct;58(1):289-304 [PMID: 16164566]
  63. Antimicrob Agents Chemother. 2012 Aug;56(8):4131-9 [PMID: 22615276]
  64. Appl Environ Microbiol. 2012 May;78(9):3098-107 [PMID: 22367088]
  65. J Bacteriol. 2007 Sep;189(17):6246-52 [PMID: 17586643]
  66. J Bacteriol. 2007 Oct;189(19):6882-90 [PMID: 17675384]
  67. Genome Res. 2012 Dec;22(12):2541-51 [PMID: 22826510]
  68. Pathog Dis. 2015 Jun;73(4): [PMID: 25808600]
  69. J Bacteriol. 1986 May;166(2):519-27 [PMID: 3516975]
  70. Science. 2008 Jun 6;320(5881):1313-7 [PMID: 18467556]
  71. Gut Microbes. 2010 Jul;1(4):285-288 [PMID: 21327035]
  72. BMC Genomics. 2014 Sep 12;15:787 [PMID: 25214426]
  73. Nat Methods. 2012 Mar 04;9(4):357-9 [PMID: 22388286]
  74. J Mol Microbiol Biotechnol. 2002 May;4(3):269-76 [PMID: 11931558]
  75. PLoS Pathog. 2006 Feb;2(2):e11 [PMID: 16518469]
  76. Clin Infect Dis. 2010 Mar 15;50(6):882-9 [PMID: 20158401]
  77. Biotechniques. 2013 Jan;54(1):25-34 [PMID: 23311318]
  78. Microbiology (Reading). 2013 Jul;159(Pt 7):1366-1378 [PMID: 23657681]
  79. Cell. 2011 Jan 7;144(1):143-56 [PMID: 21185072]
  80. Antimicrob Agents Chemother. 2008 Aug;52(8):2718-26 [PMID: 18519731]
  81. Appl Environ Microbiol. 2014 Apr;80(7):2176-85 [PMID: 24487536]
  82. Appl Environ Microbiol. 2008 Mar;74(5):1598-612 [PMID: 18192408]
  83. Nucleic Acids Res. 2004 Jan 1;32(Database issue):D271-2 [PMID: 14681410]
  84. Nat Rev Microbiol. 2013 Jul;11(7):435-42 [PMID: 23712350]
  85. Nat Rev Microbiol. 2008 Jan;6(1):17-27 [PMID: 18079741]
  86. Genes (Basel). 2021 Mar 25;12(4): [PMID: 33806186]
  87. Proc Natl Acad Sci U S A. 2014 Feb 25;111(8):3140-5 [PMID: 24516160]
  88. Int J Mol Sci. 2014 Oct 10;15(10):18267-80 [PMID: 25310651]
  89. Nat Genet. 2007 Nov;39(11):1369-75 [PMID: 17952072]
  90. MMWR Morb Mortal Wkly Rep. 2015 May 15;64(18):495-9 [PMID: 25974634]
  91. Microb Pathog. 2015 Dec;89:100-7 [PMID: 26427881]
  92. PLoS Genet. 2014 Nov 06;10(11):e1004782 [PMID: 25375795]
  93. Nat Methods. 2009 Oct;6(10):767-72 [PMID: 19767758]
  94. Cell Host Microbe. 2013 Dec 11;14(6):683-95 [PMID: 24331466]
  95. J Bacteriol. 1995 Aug;177(16):4742-7 [PMID: 7642501]
  96. Microbiology (Reading). 2002 Jan;148(Pt 1):113-122 [PMID: 11782504]
  97. Microbes Infect. 2001 Nov-Dec;3(14-15):1281-91 [PMID: 11755416]
  98. mBio. 2013 Apr 16;4(2):e00065 [PMID: 23592259]
  99. PLoS Pathog. 2013 Mar;9(3):e1003201 [PMID: 23555240]
  100. J Food Prot. 2003 Jul;66(7):1292-303 [PMID: 12870767]
  101. Anim Health Res Rev. 2005 Jun;6(1):105-18 [PMID: 16164012]
  102. Genes Dev. 1997 Jul 15;11(14):1761-74 [PMID: 9242485]
  103. Cell Syst. 2015 Oct 28;1(4):302-305 [PMID: 26594663]
  104. Infect Immun. 2004 Dec;72(12):6757-63 [PMID: 15557595]
  105. Proteomics. 2009 Oct;9(19):4468-77 [PMID: 19743422]
  106. J Biol Chem. 2014 May 2;289(18):12356-64 [PMID: 24634211]
  107. Infect Immun. 2011 Oct;79(10):4227-39 [PMID: 21768282]
  108. Nat Rev Mol Cell Biol. 2003 May;4(5):385-96 [PMID: 12728272]
  109. Proc Natl Acad Sci U S A. 1989 Jul;86(13):5054-8 [PMID: 2544889]
  110. Microbiology (Reading). 2010 Mar;156(Pt 3):719-730 [PMID: 19942657]
  111. J Bacteriol. 2008 Nov;190(22):7406-13 [PMID: 18805972]

MeSH Term

Bacterial Proteins
Fatty Acids, Volatile
Gene Expression Regulation, Bacterial
Genomic Islands
Humans
Mutagenesis, Insertional
Salmonella Infections
Salmonella typhimurium
Serogroup

Chemicals

Bacterial Proteins
Fatty Acids, Volatile

Word Cloud

Created with Highcharts 10.0.0genesSalmonellarequiredTyphimuriumhoststressfitnessvirulenceentericaTn-seqgrowthsurvivalstressorsidentifiedtotalconditionallyessentialleastoneconditionsincludingpathogenserotypemajorsignificantportionovercometransposoninsertionsequencinggeneticfactorsvariousshort-chainfattyacidosmoticoxidativeextremepHstarvation339CEGsencodingproteinsfivestudypreviouslypotentialinfectionhumangenomenontyphoidalNTSresultsrangeentericdiseasesrepresentingdiseaseburdenworldwidestillwhosemechanisticbasisinnatedefensemechanismslargelyremainsunknownappliedmethodunveilsimulatedhighlysaturatingTn5library14028ssubjectedselectionpresence100���mMpropionate3%NaCl1���mMHOacidic30���min312���days1��phosphate-bufferedsaline[PBS]mimickinginsultsInterestinglyeightFF-ATPsynthasesubunitstressesIntriguingly88pathogenicityislandsSPISPI-1SPI-2SPI-3SPI-5SPI-6SPI-11alsoAdditionallycomparativeanalysisshownnovelputativeSTM14_1138STM14_3334STM14_4825STM_5184compellingdevelopmentvaccinesantibacterialdrugscurbbacterialentersfoodchainmeatanimalsasymptomaticallycarryingDespiterichsequencedataremaincharacterizedcontributionsusedelucidateacidsAmong221knownfouranimalspeciesmicechickenspigscattlecomprehensivemapphenotype-genotypeprovidesroadmapinterrogationbiologicalfunctionsencodedimportantsurvivehostileenvironmentsGeneticDeterminantsSerotypeRequiredOvercomingStressorsMimickingHostEnvironmentvivo

Similar Articles

Cited By