How the insect central complex could coordinate multimodal navigation.

Xuelong Sun, Shigang Yue, Michael Mangan
Author Information
  1. Xuelong Sun: Machine Life and Intelligence Research Centre, School of Mathematics and Information Science, Guangzhou University, Guangzhou, China. ORCID
  2. Shigang Yue: Machine Life and Intelligence Research Centre, School of Mathematics and Information Science, Guangzhou University, Guangzhou, China.
  3. Michael Mangan: Sheffield Robotics, Department of Computer Science, University of Sheffield, Sheffield, United Kingdom.

Abstract

The central complex of the insect midbrain is thought to coordinate insect guidance strategies. Computational models can account for specific behaviours, but their applicability across sensory and task domains remains untested. Here, we assess the capacity of our previous model (Sun et al. 2020) of visual navigation to generalise to olfactory navigation and its coordination with other guidance in flies and ants. We show that fundamental to this capacity is the use of a biologically plausible neural copy-and-shift mechanism that ensures sensory information is presented in a format compatible with the insect steering circuit regardless of its source. Moreover, the same mechanism is shown to allow the transfer cues from unstable/egocentric to stable/geocentric frames of reference, providing a first account of the mechanism by which foraging insects robustly recover from environmental disturbances. We propose that these circuits can be flexibly repurposed by different insect navigators to address their unique ecological needs.

Keywords

References

  1. J Neurosci. 2012 May 2;32(18):6061-71 [PMID: 22553013]
  2. J Exp Biol. 2005 Nov;208(Pt 22):4223-30 [PMID: 16272245]
  3. J Exp Biol. 2019 Feb 6;222(Pt Suppl 1): [PMID: 30728235]
  4. Elife. 2020 Dec 30;9: [PMID: 33377868]
  5. Proc Biol Sci. 2015 Oct 7;282(1816):20151484 [PMID: 26400741]
  6. Elife. 2021 Mar 23;10: [PMID: 33755020]
  7. Elife. 2020 Jun 26;9: [PMID: 32589143]
  8. Front Psychol. 2019 Apr 05;10:690 [PMID: 31024377]
  9. Sci Rep. 2012;2:361 [PMID: 22511996]
  10. Front Behav Neurosci. 2017 May 30;11:98 [PMID: 28611605]
  11. Neuron. 2018 Nov 7;100(3):651-668.e8 [PMID: 30244885]
  12. Elife. 2021 Feb 11;10: [PMID: 33570489]
  13. Curr Opin Neurobiol. 2012 Apr;22(2):208-15 [PMID: 22169055]
  14. PLoS Comput Biol. 2020 Feb 5;16(2):e1007631 [PMID: 32023241]
  15. Curr Biol. 2012 Apr 10;22(7):645-9 [PMID: 22405868]
  16. Nat Neurosci. 2019 Sep;22(9):1460-1468 [PMID: 31332373]
  17. Elife. 2018 Aug 20;7: [PMID: 30124430]
  18. Elife. 2018 Aug 21;7: [PMID: 30129438]
  19. Science. 1974 May 31;184(4140):999-1001 [PMID: 4826172]
  20. Nature. 2009 Mar 12;458(7235):201-5 [PMID: 19279637]
  21. Biology (Basel). 2021 Jan 25;10(2): [PMID: 33504061]
  22. J Exp Biol. 2000 Mar;203(Pt 5):857-68 [PMID: 10667968]
  23. Elife. 2020 Dec 14;9: [PMID: 33315010]
  24. Elife. 2017 Jun 28;6: [PMID: 28653907]
  25. Curr Biol. 2014 Mar 3;24(5):561-7 [PMID: 24560579]
  26. Nature. 2019 Dec;576(7785):126-131 [PMID: 31748750]
  27. Elife. 2020 Nov 03;9: [PMID: 33140723]
  28. Elife. 2015 Jun 16;4: [PMID: 26077825]
  29. Elife. 2015 Oct 06;4: [PMID: 26439011]
  30. J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2019 Oct;205(5):641-659 [PMID: 31300865]
  31. Front Cell Neurosci. 2010 Mar 31;4:6 [PMID: 20407585]
  32. Curr Opin Insect Sci. 2016 Jun;15:27-39 [PMID: 27436729]
  33. Curr Biol. 2013 Dec 16;23(24):R1083-5 [PMID: 24355779]
  34. J Exp Biol. 2012 Jan 1;215(Pt 1):44-55 [PMID: 22162852]
  35. Cell Rep. 2018 Aug 7;24(6):1573-1584 [PMID: 30089267]
  36. Elife. 2021 Dec 09;10: [PMID: 34882094]
  37. J Neurosci. 2012 Jun 13;32(24):8138-48 [PMID: 22699895]
  38. Neuron. 2020 Sep 9;107(5):924-940.e18 [PMID: 32681825]
  39. Prog Neurobiol. 2010 Apr;90(4):385-417 [PMID: 19941931]
  40. Nat Neurosci. 2011 Feb;14(2):208-16 [PMID: 21217763]
  41. J Exp Biol. 2014 Dec 1;217(Pt 23):4159-66 [PMID: 25324340]
  42. J Exp Biol. 2020 Mar 11;223(Pt 5): [PMID: 32161054]
  43. Curr Biol. 2020 May 18;30(10):1927-1933.e2 [PMID: 32275874]
  44. J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2009 Jan;195(1):39-54 [PMID: 19018543]
  45. Elife. 2022 Oct 13;11: [PMID: 36226912]
  46. Elife. 2017 May 22;6: [PMID: 28530551]
  47. Nature. 2015 May 14;521(7551):186-91 [PMID: 25971509]
  48. J Neurosci. 2015 Feb 4;35(5):1831-48 [PMID: 25653345]
  49. Trends Neurosci. 2010 Mar;33(3):130-9 [PMID: 20060600]
  50. Proc Biol Sci. 2009 Jun 7;276(1664):1929-37 [PMID: 19324805]
  51. Ann N Y Acad Sci. 1987;510:104-12 [PMID: 3324874]
  52. J Comput Neurosci. 2012 Apr;32(2):197-212 [PMID: 21698405]
  53. Proc Natl Acad Sci U S A. 2010 Jun 8;107(23):10713-8 [PMID: 20498080]
  54. Elife. 2021 Aug 24;10: [PMID: 34427185]
  55. Elife. 2021 Oct 26;10: [PMID: 34696823]
  56. Arthropod Struct Dev. 2008 Sep;37(5):347-62 [PMID: 18502176]
  57. Neuron. 2019 May 22;102(4):828-842.e7 [PMID: 30948249]
  58. PLoS Comput Biol. 2016 Feb 11;12(2):e1004683 [PMID: 26866692]
  59. Neuroscience. 1999;89(4):1009-23 [PMID: 10362291]
  60. Curr Biol. 2018 Apr 23;28(8):1189-1203.e5 [PMID: 29657118]
  61. Annu Rev Neurosci. 2013 Jul 8;36:217-41 [PMID: 23841839]
  62. PLoS One. 2017 Feb 27;12(2):e0172325 [PMID: 28241061]
  63. Proc Natl Acad Sci U S A. 2011 Sep 13;108 Suppl 3:15624-30 [PMID: 21788505]
  64. Elife. 2021 Sep 15;10: [PMID: 34523418]
  65. Nature. 2019 Dec;576(7785):121-125 [PMID: 31748749]
  66. J Comput Neurosci. 2011 Feb;30(1):143-61 [PMID: 20730480]
  67. Curr Biol. 2014 Feb 3;24(3):274-86 [PMID: 24440395]
  68. Neuron. 2010 Apr 29;66(2):287-99 [PMID: 20435004]
  69. Curr Biol. 2017 Oct 23;27(20):3069-3085.e11 [PMID: 28988858]
  70. Elife. 2014 Dec 23;3:e04580 [PMID: 25535794]
  71. Neuron. 2020 Apr 8;106(1):126-141.e5 [PMID: 32023429]
  72. Neuron. 2016 Jul 20;91(2):425-38 [PMID: 27373835]
  73. Proc Biol Sci. 2013 Aug 21;280(1769):20131677 [PMID: 23966644]
  74. PLoS Comput Biol. 2021 Sep 23;17(9):e1009383 [PMID: 34555013]
  75. PLoS Comput Biol. 2019 Jul 18;15(7):e1007123 [PMID: 31318859]
  76. Neurobiol Learn Mem. 2005 Jan;83(1):1-12 [PMID: 15607683]
  77. Nature. 2017 Jun 1;546(7656):101-106 [PMID: 28538731]

MeSH Term

Animals
Central Nervous System
Chemotaxis
Insecta
Models, Theoretical
Movement
Spatial Navigation

Word Cloud

Created with Highcharts 10.0.0insectnavigationcentralcomplexmechanismcoordinateguidancecanaccountsensorycapacitysteeringcircuitmultimodalbiologymidbrainthoughtstrategiesComputationalmodelsspecificbehavioursapplicabilityacrosstaskdomainsremainsuntestedassesspreviousmodelSunetal2020visualgeneraliseolfactorycoordinationfliesantsshowfundamentalusebiologicallyplausibleneuralcopy-and-shiftensuresinformationpresentedformatcompatibleregardlesssourceMoreovershownallowtransfercuesunstable/egocentricstable/geocentricframesreferenceprovidingfirstforaginginsectsrobustlyrecoverenvironmentaldisturbancesproposecircuitsflexiblyrepurposeddifferentnavigatorsaddressuniqueecologicalneedscomputationalcueintegrationmushroombodynoneringattractorssystems

Similar Articles

Cited By (13)