Mobility of -lactam resistance under ampicillin treatment in gut microbiota suffering from pre-disturbance.

Alexander Laskey, John Devenish, Mingsong Kang, Mirjana Savic, John Chmara, Hanhong Dan, Min Lin, James Robertson, Kyrylo Bessonov, Simone Gurnik, Kira Liu, John H E Nash, Edward Topp, Jiewen Guan
Author Information
  1. Alexander Laskey: Ottawa Laboratory-Fallowfield, Canadian Food Inspection Agency, Ottawa, ON, Canada.
  2. John Devenish: Ottawa Laboratory-Fallowfield, Canadian Food Inspection Agency, Ottawa, ON, Canada.
  3. Mingsong Kang: Ottawa Laboratory-Fallowfield, Canadian Food Inspection Agency, Ottawa, ON, Canada.
  4. Mirjana Savic: Ottawa Laboratory-Fallowfield, Canadian Food Inspection Agency, Ottawa, ON, Canada.
  5. John Chmara: Ottawa Laboratory-Fallowfield, Canadian Food Inspection Agency, Ottawa, ON, Canada.
  6. Hanhong Dan: Ottawa Laboratory-Fallowfield, Canadian Food Inspection Agency, Ottawa, ON, Canada.
  7. Min Lin: Ottawa Laboratory-Fallowfield, Canadian Food Inspection Agency, Ottawa, ON, Canada.
  8. James Robertson: National Microbiology Laboratory, Public Health Agency of Canada, Guelph, ON, Canada.
  9. Kyrylo Bessonov: National Microbiology Laboratory, Public Health Agency of Canada, Guelph, ON, Canada.
  10. Simone Gurnik: National Microbiology Laboratory, Public Health Agency of Canada, Guelph, ON, Canada.
  11. Kira Liu: National Microbiology Laboratory, Public Health Agency of Canada, Guelph, ON, Canada.
  12. John H E Nash: National Microbiology Laboratory, Public Health Agency of Canada, Guelph, ON, Canada.
  13. Edward Topp: London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada.
  14. Jiewen Guan: Ottawa Laboratory-Fallowfield, Canadian Food Inspection Agency, Ottawa, ON, Canada.

Abstract

Ingestion of food- or waterborne antibiotic-resistant bacteria may lead to dissemination of antibiotic resistance genes (ARGs) in the gut microbiota. The gut microbiota often suffers from various disturbances. It is not clear whether and how disturbed microbiota may affect ARG mobility under antibiotic treatments. For proof of concept, in the presence or absence of streptomycin pre-treatment, mice were inoculated orally with a -lactam-susceptible serovar Heidelberg clinical isolate (recipient) and a -lactam resistant O80:H26 isolate (donor) carrying a gene on an IncI2 plasmid. Immediately following inoculation, mice were treated with or without ampicillin in drinking water for 7 days. Faeces were sampled, donor, recipient and transconjugant were enumerated, abundance was determined by quantitative PCR, faecal microbial community composition was determined by 16S rRNA amplicon sequencing and cecal samples were observed histologically for evidence of inflammation. In faeces of mice that received streptomycin pre-treatment, the donor abundance remained high, and the abundance of . Heidelberg transconjugant and the relative abundance of increased significantly during the ampicillin treatment. Co-blooming of the donor, transconjugant and commensal in the inflamed intestine promoted significantly (<0.05) higher and possibly wider dissemination of the gene in the gut microbiota of mice that received the combination of streptomycin pre-treatment and ampicillin treatment (Str-Amp) compared to the other mice. Following cessation of the ampicillin treatment, faecal shedding of . Heidelberg transconjugant persisted much longer from mice in the Str-Amp group compared to the other mice. In addition, only mice in the Str-Amp group shed a commensal O2:H6 transconjugant, which carries three copies of the gene, one on the IncI2 plasmid and two on the chromosome. The findings highlight the significance of pre-existing gut microbiota for ARG dissemination and persistence during and following antibiotic treatments of infectious diseases.

Keywords

References

  1. Environ Int. 2018 Aug;117:132-138 [PMID: 29747082]
  2. Proc Natl Acad Sci U S A. 2012 Jan 24;109(4):1269-74 [PMID: 22232693]
  3. mBio. 2019 Oct 8;10(5): [PMID: 31594809]
  4. Bioinformatics. 2012 Apr 15;28(8):1166-7 [PMID: 22368248]
  5. Nat Ecol Evol. 2017 Sep;1(9):1348-1353 [PMID: 28890938]
  6. Microbiol Mol Biol Rev. 2020 Dec 23;85(1): [PMID: 33361269]
  7. J Microbiol Methods. 2004 Jun;57(3):399-407 [PMID: 15134887]
  8. Curr Opin Microbiol. 2017 Feb;35:8-15 [PMID: 27883933]
  9. Microb Genom. 2018 Aug;4(8): [PMID: 30052170]
  10. Int J Clin Exp Pathol. 2014 Jul 15;7(8):4557-76 [PMID: 25197329]
  11. Nat Rev Microbiol. 2015 May;13(5):310-7 [PMID: 25817583]
  12. BMC Microbiol. 2013 Nov 21;13:264 [PMID: 24262067]
  13. Infect Drug Resist. 2014 Jun 20;7:167-76 [PMID: 25018641]
  14. Nucleic Acids Res. 2013 Jan 7;41(1):e1 [PMID: 22933715]
  15. Cell Host Microbe. 2018 Aug 8;24(2):296-307.e7 [PMID: 30057174]
  16. J Appl Microbiol. 2014 Dec;117(6):1689-99 [PMID: 25250562]
  17. J Antimicrob Chemother. 2019 Jul 1;74(7):1867-1875 [PMID: 30989200]
  18. Proc Biol Sci. 2009 Nov 7;276(1674):3759-68 [PMID: 19656787]
  19. S Afr Med J. 2015 Apr 06;105(5):325 [PMID: 26242647]
  20. Cell Host Microbe. 2019 Jan 9;25(1):128-139.e5 [PMID: 30629913]
  21. ISME J. 2016 Mar;10(3):778-87 [PMID: 26505830]
  22. Antimicrob Agents Chemother. 2017 Mar 24;61(4): [PMID: 28137797]
  23. CSH Protoc. 2008 May 01;2008:pdb.prot4986 [PMID: 21356829]
  24. FEMS Microbiol Ecol. 2016 Nov;92(11): [PMID: 27604258]
  25. Appl Environ Microbiol. 2017 Aug 1;83(16): [PMID: 28625995]
  26. J Exp Med. 2019 Jan 7;216(1):84-98 [PMID: 30563917]
  27. Microbiol Spectr. 2018 Mar;6(2): [PMID: 29600770]
  28. Foodborne Pathog Dis. 2012 Nov;9(11):1022-7 [PMID: 22985052]
  29. Nat Microbiol. 2016 Apr 11;1(6):16044 [PMID: 27572835]
  30. Microb Genom. 2020 Oct;6(10): [PMID: 32969786]
  31. Bioinformatics. 2014 Jul 15;30(14):2068-9 [PMID: 24642063]
  32. mBio. 2016 Sep 06;7(5): [PMID: 27601577]
  33. Science. 2017 Aug 11;357(6351):570-575 [PMID: 28798125]
  34. Front Microbiol. 2020 Jul 07;11:1591 [PMID: 32733428]
  35. Antimicrob Resist Infect Control. 2019 Jan 29;8:22 [PMID: 30728954]

MeSH Term

Ampicillin
Animals
Antibiotic Prophylaxis
Disease Models, Animal
Escherichia coli
Feces
Female
Gene Transfer, Horizontal
Gram-Negative Bacterial Infections
Mice
Proof of Concept Study
RNA, Ribosomal, 16S
Salmonella Infections
Salmonella enterica
Streptomycin
Whole Genome Sequencing
beta-Lactam Resistance
beta-Lactamases

Chemicals

RNA, Ribosomal, 16S
Ampicillin
beta-lactamase CMY-2
beta-Lactamases
Streptomycin

Word Cloud

Created with Highcharts 10.0.0micemicrobiotagutantibioticampicillintransconjuganttreatmentdonorabundancedisseminationresistancestreptomycinpre-treatmentHeidelberggeneplasmidStr-AmpmayARGtreatmentsisolaterecipient-lactamIncI2followingdeterminedfaecalinflammationreceivedsignificantlycommensalcomparedgroupIngestionfood-waterborneantibiotic-resistantbacterialeadgenesARGsoftensuffersvariousdisturbancesclearwhetherdisturbedaffectmobilityproofconceptpresenceabsenceinoculatedorally-lactam-susceptibleserovarclinicalresistantO80:H26carryingImmediatelyinoculationtreatedwithoutdrinkingwater7 daysFaecessampledenumeratedquantitativePCRmicrobialcommunitycomposition16SrRNAampliconsequencingcecalsamplesobservedhistologicallyevidencefaecesremainedhighrelativeincreasedCo-bloominginflamedintestinepromoted<005higherpossiblywidercombinationFollowingcessationsheddingpersistedmuchlongeradditionshedO2:H6carriesthreecopiesonetwochromosomefindingshighlightsignificancepre-existingpersistenceinfectiousdiseasesMobilitysufferingpre-disturbanceintestinaltransfer

Similar Articles

Cited By