Constructing gene regulatory networks using epigenetic data.

Abhijeet Rajendra Sonawane, Dawn L DeMeo, John Quackenbush, Kimberly Glass
Author Information
  1. Abhijeet Rajendra Sonawane: Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA. ORCID
  2. Dawn L DeMeo: Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA.
  3. John Quackenbush: Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA. ORCID
  4. Kimberly Glass: Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA. kimberly.glass@channing.harvard.edu. ORCID

Abstract

The biological processes that drive cellular function can be represented by a complex network of interactions between regulators (transcription factors) and their targets (genes). A cell's epigenetic state plays an important role in mediating these interactions, primarily by influencing chromatin accessibility. However, how to effectively use epigenetic data when constructing a gene regulatory network remains an open question. Almost all existing network reconstruction approaches focus on estimating transcription factor to gene connections using transcriptomic data. In contrast, computational approaches for analyzing epigenetic data generally focus on improving transcription factor binding site predictions rather than deducing regulatory network relationships. We bridged this gap by developing SPIDER, a network reconstruction approach that incorporates epigenetic data into a message-passing framework to estimate gene regulatory networks. We validated SPIDER's predictions using ChIP-seq data from ENCODE and found that SPIDER networks are both highly accurate and include cell-line-specific regulatory interactions. Notably, SPIDER can recover ChIP-seq verified transcription factor binding events in the regulatory regions of genes that do not have a corresponding sequence motif. The networks estimated by SPIDER have the potential to identify novel hypotheses that will allow us to better characterize cell-type and phenotype specific regulatory mechanisms.

References

  1. Mitchell, P. J. & Tjian, R. Transcriptional regulation in mammalian cells by sequence-specific DNA binding proteins. Science 245, 371–378 (1989). [PMID: 2667136]
  2. Farnham, P. J. Insights from genomic profiling of transcription factors. Nat. Rev. Genet. 10, 605–616 (2009). [PMID: 19668247]
  3. Sonawane, A. R. et al. Understanding tissue-specific gene regulation. Cell Rep. 21, 1077–1088 (2017). [PMID: 29069589]
  4. Lopes-Ramos, C. M. et al. Sex differences in gene expression and regulatory networks across 29 human tissues. Cell Rep. 31, 107795 (2020). [PMID: 32579922]
  5. Vargas, A. J., Quackenbush, J. & Glass, K. Diet-induced weight loss leads to a switch in gene regulatory network control in the rectal mucosa. Genomics 108, 126–133 (2016). [PMID: 27524493]
  6. Qiu, W. et al. Differential connectivity of gene regulatory networks distinguishes corticosteroid response in asthma. J. Allergy Clin. Immunol. 141, 1250–1258 (2018). [PMID: 28736268]
  7. Glass, K. et al. Sexually-dimorphic targeting of functionally-related genes in COPD. BMC Syst. Biol. 8, 118 (2014). [PMID: 25431000]
  8. Glass, K., Quackenbush, J., Spentzos, D., Haibe-Kains, B. & Yuan, G. C. A network model for angiogenesis in ovarian cancer. BMC Bioinformatics 16, 115 (2015). [PMID: 25888305]
  9. Marbach, D. et al. Wisdom of crowds for robust gene network inference. Nat Methods 9, 796–804 (2012). [PMID: 22796662]
  10. Zheng, G. & Huang, T. The reconstruction and analysis of gene regulatory networks. Methods Mol. Biol. 1754, 137–154 (2018). [PMID: 29536441]
  11. Delgado, F. M. & Gomez-Vela, F. Computational methods for Gene Regulatory Networks reconstruction and analysis: a review. Artif. Intell. Med. 95, 133–145 (2019). [PMID: 30420244]
  12. Johnson, D. S., Mortazavi, A., Myers, R. M. & Wold, B. Genome-wide mapping of in vivo protein-DNA interactions. Science 316, 1497–1502 (2007). [PMID: 17540862]
  13. Huynh-Thu, V. A., Irrthum, A., Wehenkel, L. & Geurts, P. Inferring regulatory networks from expression data using tree-based methods. PLoS ONE 5, e12776 (2010).
  14. Margolin, A. A. et al. ARACNE: an algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context. BMC Bioinformatics 7(Suppl 1), S7 (2006). [PMID: 16723010]
  15. Faith, J. J. et al. Large-scale mapping and validation of Escherichia coli transcriptional regulation from a compendium of expression profiles. PLoS Biol. 5, e8 (2007). [PMID: 17214507]
  16. Greene, C. S. et al. Understanding multicellular function and disease with human tissue-specific networks. Nat. Genet. 47, 569–576 (2015). [PMID: 25915600]
  17. Haury, A. C., Mordelet, F., Vera-Licona, P. & Vert, J. P. TIGRESS: Trustful Inference of Gene REgulation using Stability Selection. BMC Syst. Biol. 6, 145 (2012). [PMID: 23173819]
  18. Glass, K., Huttenhower, C., Quackenbush, J. & Yuan, G. C. Passing messages between biological networks to refine predicted interactions. PLoS ONE 8, e64832 (2013). [PMID: 23741402]
  19. Ernst, J. et al. A semi-supervised method for predicting transcription factor-gene interactions in Escherichia coli. PLoS Comput. Biol. 4, e1000044 (2008). [PMID: 18369434]
  20. Kang, Y., Liow, H. H., Maier, E. J. & Brent, M. R. NetProphet 2.0: mapping transcription factor networks by exploiting scalable data resources. Bioinformatics 34, 249–257 (2018). [PMID: 28968736]
  21. Lopes-Ramos, C. M. et al. Gene regulatory network analysis identifies sex-linked differences in colon cancer drug metabolism. Cancer Res. 78, 5538–5547 (2018). [PMID: 30275053]
  22. Lopes-Ramos, C. M. et al. Regulatory network changes between cell lines and their tissues of origin. BMC Genomics 18, 723 (2017). [PMID: 28899340]
  23. Sonawane, A. R., Weiss, S. T., Glass, K. & Sharma, A. Network medicine in the age of biomedical big data. Front. Genet. 10, 294 (2019). [PMID: 31031797]
  24. Liu, Z. P., Wu, C., Miao, H. & Wu, H. RegNetwork: an integrated database of transcriptional and post-transcriptional regulatory networks in human and mouse. Database (Oxford). 2015, bav095 (2015).
  25. Garcia-Alonso, L., Holland, C. H., Ibrahim, M. M., Turei, D. & Saez-Rodriguez, J. Benchmark and integration of resources for the estimation of human transcription factor activities. Genome Res. 29, 1363–1375 (2019). [PMID: 31340985]
  26. Fang, L. et al. GRNdb: decoding the gene regulatory networks in diverse human and mouse conditions. Nucleic Acids Res. 49, D97–D103 (2021). [PMID: 33151298]
  27. Keenan, A. B. et al. ChEA3: transcription factor enrichment analysis by orthogonal omics integration. Nucleic Acids Res. 47, W212–W224 (2019). [PMID: 31114921]
  28. Schubeler, D. & Elgin, S. C. Defining epigenetic states through chromatin and RNA. Nat. Genet. 37, 917–918 (2005). [PMID: 16132044]
  29. Hesselberth, J. R. et al. Global mapping of protein-DNA interactions in vivo by digital genomic footprinting. Nat. Methods 6, 283–289 (2009). [PMID: 19305407]
  30. Buenrostro, J. D., Giresi, P. G., Zaba, L. C., Chang, H. Y. & Greenleaf, W. J. Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nat. Methods 10, 1213–1218 (2013). [PMID: 24097267]
  31. Stormo, G. D. & Zhao, Y. Determining the specificity of protein-DNA interactions. Nat. Rev. Genet. 11, 751–760 (2010). [PMID: 20877328]
  32. Lambert, S. A. et al. The human transcription factors. Cell 172, 650–665 (2018). [PMID: 29425488]
  33. Deplancke, B., Alpern, D. & Gardeux, V. The genetics of transcription factor DNA binding variation. Cell 166, 538–554 (2016). [PMID: 27471964]
  34. Neph, S. et al. An expansive human regulatory lexicon encoded in transcription factor footprints. Nature 489, 83–90 (2012). [PMID: 22955618]
  35. Kahara, J. & Lahdesmaki, H. BinDNase: a discriminatory approach for transcription factor binding prediction using DNase I hypersensitivity data. Bioinformatics 31, 2852–2859 (2015). [PMID: 25957350]
  36. Gusmao, E. G., Allhoff, M., Zenke, M. & Costa, I. G. Analysis of computational footprinting methods for DNase sequencing experiments. Nat. Methods 13, 303–309 (2016). [PMID: 26901649]
  37. Pique-Regi, R. et al. Accurate inference of transcription factor binding from DNA sequence and chromatin accessibility data. Genome Res. 21, 447–455 (2011). [PMID: 21106904]
  38. Schmidt, F. et al. Combining transcription factor binding affinities with open-chromatin data for accurate gene expression prediction. Nucleic Acids Res. 45, 54–66 (2017). [PMID: 27899623]
  39. Sherwood, R. I. et al. Discovery of directional and nondirectional pioneer transcription factors by modeling DNase profile magnitude and shape. Nat. Biotechnol. 32, 171–178 (2014). [PMID: 24441470]
  40. Luo, K. & Hartemink, A. J. Using DNase digestion data to accurately identify transcription factor binding sites. Pac. Symp. Biocomput. 18, 80–91 (2013).
  41. Keilwagen, J., Posch, S. & Grau, J. Accurate prediction of cell type-specific transcription factor binding. Genome Biol. 20, 9 (2019). [PMID: 30630522]
  42. Grant, C. E., Bailey, T. L. & Noble, W. S. FIMO: scanning for occurrences of a given motif. Bioinformatics 27, 1017–1018 (2011). [PMID: 21330290]
  43. Weirauch, M. T. et al. Determination and inference of eukaryotic transcription factor sequence specificity. Cell 158, 1431–1443 (2014). [PMID: 25215497]
  44. O’Leary, N. A. et al. Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation. Nucleic Acids Res. 44, D733–745 (2016). [PMID: 26553804]
  45. Spivakov, M. Spurious transcription factor binding: non-functional or genetically redundant? Bioessays 36, 798–806 (2014). [PMID: 24888900]
  46. Lee, T. I. & Young, R. A. Transcriptional regulation and its misregulation in disease. Cell 152, 1237–1251 (2013). [PMID: 23498934]
  47. Shlyueva, D., Stampfel, G. & Stark, A. Transcriptional enhancers: from properties to genome-wide predictions. Nat. Rev. Genet. 15, 272–286 (2014). [PMID: 24614317]
  48. Thurman, R. E. et al. The accessible chromatin landscape of the human genome. Nature 489, 75–82 (2012). [PMID: 22955617]
  49. Heintzman, N. D. et al. Histone modifications at human enhancers reflect global cell-type-specific gene expression. Nature 459, 108–112 (2009). [PMID: 19295514]
  50. Visel, A. et al. ChIP-seq accurately predicts tissue-specific activity of enhancers. Nature 457, 854–858 (2009). [PMID: 19212405]
  51. Whyte, W. A. et al. Master transcription factors and mediator establish super-enhancers at key cell identity genes. Cell 153, 307–319 (2013). [PMID: 23582322]
  52. Parker, S. C. et al. Chromatin stretch enhancer states drive cell-specific gene regulation and harbor human disease risk variants. Proc. Natl Acad. Sci. USA 110, 17921–17926 (2013). [PMID: 24127591]
  53. Bulger, M. & Groudine, M. Functional and mechanistic diversity of distal transcription enhancers. Cell 144, 327–339 (2011). [PMID: 21295696]
  54. Calo, E. & Wysocka, J. Modification of enhancer chromatin: what, how, and why? Mol Cell 49, 825–837 (2013). [PMID: 23473601]
  55. Kim, T. K. & Shiekhattar, R. Architectural and functional commonalities between enhancers and promoters. Cell 162, 948–959 (2015). [PMID: 26317464]
  56. Moore, J. E., Pratt, H. E., Purcaro, M. J. & Weng, Z. A curated benchmark of enhancer-gene interactions for evaluating enhancer-target gene prediction methods. Genome Biol. 21, 17 (2020). [PMID: 31969180]
  57. Zabidi, M. A. et al. Enhancer-core-promoter specificity separates developmental and housekeeping gene regulation. Nature 518, 556–559 (2015). [PMID: 25517091]
  58. Farre, D., Bellora, N., Mularoni, L., Messeguer, X. & Alba, M. M. Housekeeping genes tend to show reduced upstream sequence conservation. Genome Biol. 8, R140 (2007). [PMID: 17626644]
  59. Neph, S. et al. Circuitry and dynamics of human transcription factor regulatory networks. Cell 150, 1274–1286 (2012). [PMID: 22959076]
  60. Marbach, D. et al. Tissue-specific regulatory circuits reveal variable modular perturbations across complex diseases. Nat. Methods 13, 366–370 (2016). [PMID: 26950747]
  61. Schmidt, F., Kern, F., Ebert, P., Baumgarten, N. & Schulz, M. H. TEPIC 2-an extended framework for transcription factor binding prediction and integrative epigenomic analysis. Bioinformatics 35, 1608–1609 (2019). [PMID: 30304373]
  62. Inukai, S., Kock, K. H. & Bulyk, M. L. Transcription factor-DNA binding: beyond binding site motifs. Curr. Opin. Genet. Dev. 43, 110–119 (2017). [PMID: 28359978]
  63. Siggers, T., Duyzend, M. H., Reddy, J., Khan, S. & Bulyk, M. L. Non-DNA-binding cofactors enhance DNA-binding specificity of a transcriptional regulatory complex. Mol. Syst. Biol. 7, 555 (2011). [PMID: 22146299]
  64. Nakagawa, T., Yoneda, M., Higashi, M., Ohkuma, Y. & Ito, T. Enhancer function regulated by combinations of transcription factors and cofactors. Genes Cells 23, 808–821 (2018). [PMID: 30092612]
  65. Pullamsetti, S. S. et al. Phosphodiesterase-4 promotes proliferation and angiogenesis of lung cancer by crosstalk with HIF. Oncogene 32, 1121–1134 (2013). [PMID: 22525277]
  66. Lin, D. C. et al. Genomic and functional characterizations of phosphodiesterase subtype 4D in human cancers. Proc. Natl Acad. Sci. USA 110, 6109–6114 (2013). [PMID: 23536305]
  67. He, N. et al. Integrated analysis of transcriptomes of cancer cell lines and patient samples reveals STK11/LKB1-driven regulation of cAMP phosphodiesterase-4D. Mol. Cancer Ther. 13, 2463–2473 (2014). [PMID: 25122068]
  68. Kolosionek, E. et al. Expression and activity of phosphodiesterase isoforms during epithelial mesenchymal transition: the role of phosphodiesterase 4. Mol. Biol. Cell 20, 4751–4765 (2009). [PMID: 19759179]
  69. Zhao, J. G., Ren, K. M. & Tang, J. Zinc finger protein ZBTB20 promotes cell proliferation in non-small cell lung cancer through repression of FoxO1. FEBS Lett. 588, 4536–4542 (2014). [PMID: 25311537]
  70. Xiang, G., Yi, Y., Weiwei, H. & Weiming, W. TGIF1 promoted the growth and migration of cancer cells in nonsmall cell lung cancer. Tumour Biol. 36, 9303–9310 (2015). [PMID: 26104768]
  71. Wang, Y. et al. Silencing of TGIF attenuates the tumorigenicity of A549 cells in vitro and in vivo. Tumour Biol. 37, 12725–12730 (2016). [PMID: 27448304]
  72. Wilson, H. L. & Roesler, W. J. CCAAT/enhancer binding proteins: do they possess intrinsic cAMP-inducible activity? Mol. Cell Endocrinol. 188, 15–20 (2002). [PMID: 11911941]
  73. Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010). [PMID: 20110278]
  74. Glass, K., Quackenbush, J. & Kepner, J. High performance computing of gene regulatory networks using a message passing model, in 2015 IEEE High Performance Extreme Computing Conference (HPEC) 1–6 (IEEE, 2015). https://doi.org/10.1109/HPEC.2015.7322475 .
  75. Yang, Y. et al. Leveraging biological replicates to improve analysis in ChIP-seq experiments. Comput. Struct. Biotechnol. J. 9, e201401002 (2014). [PMID: 24688750]
  76. Landt, S. G. et al. ChIP-seq guidelines and practices of the ENCODE and modENCODE consortia. Genome Res. 22, 1813–1831 (2012). [PMID: 22955991]

Grants

  1. K25 HL133599/NHLBI NIH HHS
  2. S10 RR026772/NCRR NIH HHS
  3. R35 CA220523/NCI NIH HHS
  4. P01 HL132825/NHLBI NIH HHS
  5. P01 HL114501/NHLBI NIH HHS

MeSH Term

Chromatin Immunoprecipitation
Computational Biology
Epigenesis, Genetic
Gene Regulatory Networks
Transcription Factors

Chemicals

Transcription Factors

Word Cloud

Created with Highcharts 10.0.0regulatorydatanetworkepigenetictranscriptiongeneSPIDERnetworksinteractionsfactorusingcangenesreconstructionapproachesfocusbindingpredictionsChIP-seqbiologicalprocessesdrivecellularfunctionrepresentedcomplexregulatorsfactorstargetscell'sstateplaysimportantrolemediatingprimarilyinfluencingchromatinaccessibilityHowevereffectivelyuseconstructingremainsopenquestionAlmostexistingestimatingconnectionstranscriptomiccontrastcomputationalanalyzinggenerallyimprovingsiteratherdeducingrelationshipsbridgedgapdevelopingapproachincorporatesmessage-passingframeworkestimatevalidatedSPIDER'sENCODEfoundhighlyaccurateincludecell-line-specificNotablyrecoververifiedeventsregionscorrespondingsequencemotifestimatedpotentialidentifynovelhypotheseswillallowusbettercharacterizecell-typephenotypespecificmechanismsConstructing

Similar Articles

Cited By