Bayesian Sparse Mediation Analysis with Targeted Penalization of Natural Indirect Effects.

Yanyi Song, Xiang Zhou, Jian Kang, Max T Aung, Min Zhang, Wei Zhao, Belinda L Needham, Sharon L R Kardia, Yongmei Liu, John D Meeker, Jennifer A Smith, Bhramar Mukherjee
Author Information
  1. Yanyi Song: University of Michigan, Ann Arbor, MI, USA.
  2. Xiang Zhou: University of Michigan, Ann Arbor, MI, USA.
  3. Jian Kang: University of Michigan, Ann Arbor, MI, USA.
  4. Max T Aung: University of Michigan, Ann Arbor, MI, USA.
  5. Min Zhang: University of Michigan, Ann Arbor, MI, USA.
  6. Wei Zhao: University of Michigan, Ann Arbor, MI, USA.
  7. Belinda L Needham: University of Michigan, Ann Arbor, MI, USA.
  8. Sharon L R Kardia: University of Michigan, Ann Arbor, MI, USA.
  9. Yongmei Liu: Duke University, Durham, NC, USA.
  10. John D Meeker: University of Michigan, Ann Arbor, MI, USA.
  11. Jennifer A Smith: University of Michigan, Ann Arbor, MI, USA.
  12. Bhramar Mukherjee: University of Michigan, Ann Arbor, MI, USA.

Abstract

Causal mediation analysis aims to characterize an exposure's effect on an outcome and quantify the indirect effect that acts through a given mediator or a group of mediators of interest. With the increasing availability of measurements on a large number of potential mediators, like the epigenome or the microbiome, new statistical methods are needed to simultaneously accommodate high-dimensional mediators while directly target penalization of the natural indirect effect (NIE) for active mediator identification. Here, we develop two novel prior models for identification of active mediators in high-dimensional mediation analysis through penalizing NIEs in a Bayesian paradigm. Both methods specify a joint prior distribution on the exposure-mediator effect and mediator-outcome effect with either (a) a four-component Gaussian mixture prior or (b) a product threshold Gaussian prior. By jointly modeling the two parameters that contribute to the NIE, the proposed methods enable penalization on their product in a targeted way. Resultant inference can take into account the four-component composite structure underlying the NIE. We show through simulations that the proposed methods improve both selection and estimation accuracy compared to other competing methods. We applied our methods for an in-depth analysis of two ongoing epidemiologic studies: the Multi-Ethnic Study of Atherosclerosis (MESA) and the LIFECODES birth cohort. The identified active mediators in both studies reveal important biological pathways for understanding disease mechanisms.

Keywords

References

  1. Cardiovasc Res. 2018 Jul 15;114(9):1241-1257 [PMID: 29617720]
  2. Bioinformatics. 2018 Aug 15;34(16):2797-2807 [PMID: 29635306]
  3. Clin Epidemiol. 2012;4:213-24 [PMID: 22936857]
  4. J Pers Soc Psychol. 1986 Dec;51(6):1173-82 [PMID: 3806354]
  5. Stat Med. 2009 Mar 30;28(7):1108-30 [PMID: 19184975]
  6. Ann Appl Stat. 2019 Sep;13(3):1927-1956 [PMID: 31656548]
  7. Biometrika. 2018 Mar;105(1):165-184 [PMID: 30686828]
  8. BMC Med Genomics. 2014 Sep 30;7:57 [PMID: 25270054]
  9. Sci Rep. 2018 Nov 5;8(1):16330 [PMID: 30397228]
  10. Biometrics. 2020 Sep;76(3):700-710 [PMID: 31733066]
  11. J Am Stat Assoc. 2019;114(525):184-197 [PMID: 36937091]
  12. Nat Commun. 2020 Nov 6;11(1):5624 [PMID: 33159049]
  13. Bayesian Anal. 2020 Mar;15(1):79-102 [PMID: 32802246]
  14. Epigenetics. 2017 Aug;12(8):662-673 [PMID: 28678593]
  15. Annu Rev Public Health. 2016;37:17-32 [PMID: 26653405]
  16. Annu Rev Psychol. 2007;58:593-614 [PMID: 16968208]
  17. Biometrics. 2016 Jun;72(2):402-13 [PMID: 26414245]
  18. Environ Int. 2014 Sep;70:118-24 [PMID: 24934852]
  19. Antioxid Redox Signal. 2015 Apr 1;22(10):819-31 [PMID: 25556857]
  20. Am J Epidemiol. 2002 Nov 1;156(9):871-81 [PMID: 12397006]
  21. Bioinformatics. 2016 Oct 15;32(20):3150-3154 [PMID: 27357171]
  22. J Am Stat Assoc. 2017;112(517):254-265 [PMID: 29881129]
  23. Am J Obstet Gynecol. 2015 Feb;212(2):208.e1-8 [PMID: 25111586]
  24. Sci Rep. 2019 Nov 19;9(1):17049 [PMID: 31745121]
  25. Biostatistics. 2018 Apr 1;19(2):121-136 [PMID: 28637279]

Grants

  1. HHSN268201500003C/NHLBI NIH HHS
  2. N01HC95160/NHLBI NIH HHS
  3. R01 HL135009/NHLBI NIH HHS
  4. UL1 TR001079/NCATS NIH HHS
  5. R01 HL101250/NHLBI NIH HHS
  6. N01HC95164/NHLBI NIH HHS
  7. N01HC95162/NHLBI NIH HHS
  8. N01HC95168/NHLBI NIH HHS
  9. P30 DK063491/NIDDK NIH HHS
  10. N01HC95159/NHLBI NIH HHS
  11. N01HC95167/NHLBI NIH HHS
  12. UL1 TR000040/NCATS NIH HHS
  13. N01HC95166/NHLBI NIH HHS
  14. UL1 TR001881/NCATS NIH HHS
  15. UL1 TR003098/NCATS NIH HHS
  16. R01 HL141292/NHLBI NIH HHS
  17. N01HC95163/NHLBI NIH HHS
  18. R01 DK101921/NIDDK NIH HHS
  19. R01 MH105561/NIMH NIH HHS
  20. N01HC95169/NHLBI NIH HHS
  21. R01 MD011721/NIMHD NIH HHS
  22. N01HC95165/NHLBI NIH HHS
  23. N01HC95161/NHLBI NIH HHS
  24. UL1 TR001420/NCATS NIH HHS
  25. P30 ES017885/NIEHS NIH HHS
  26. R01 DA048993/NIDA NIH HHS
  27. R01 HG009124/NHGRI NIH HHS
  28. R01 GM124061/NIGMS NIH HHS
  29. HHSN268201500003I/NHLBI NIH HHS
  30. RF1 AG054474/NIA NIH HHS

Word Cloud

Created with Highcharts 10.0.0mediatorsmethodseffectpriorGaussiananalysisNIEactivetwomediationindirectmediatorhigh-dimensionalpenalizationidentificationmodelsBayesianfour-componentmixtureproductthresholdproposedCausalaimscharacterizeexposure'soutcomequantifyactsgivengroupinterestincreasingavailabilitymeasurementslargenumberpotentiallikeepigenomemicrobiomenewstatisticalneededsimultaneouslyaccommodatedirectlytargetnaturaldevelopnovelpenalizingNIEsparadigmspecifyjointdistributionexposure-mediatormediator-outcomeeitherbjointlymodelingparameterscontributeenabletargetedwayResultantinferencecantakeaccountcompositestructureunderlyingshowsimulationsimproveselectionestimationaccuracycomparedcompetingappliedin-depthongoingepidemiologicstudies:Multi-EthnicStudyAtherosclerosisMESALIFECODESbirthcohortidentifiedstudiesrevealimportantbiologicalpathwaysunderstandingdiseasemechanismsSparseMediationAnalysisTargetedPenalizationNaturalIndirectEffectsCompositenullhypothesisEnvironmentalexposurephthalatesEpigeneticsHigh-dimensionalPathwayLassoPosteriorinclusionprobabilityProduct

Similar Articles

Cited By