Transcriptional identification of genes light-interacting in the extraretinal photoreceptors of the crayfish .

Gabina Calderón-Rosete, Juan Antonio González-Barrios, Celia Piña-Leyva, Hayde Nallely Moreno-Sandoval, Manuel Lara-Lozano, Leonardo Rodríguez-Sosa
Author Information
  1. Gabina Calderón-Rosete: Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad Universitaria, C. P. 04510, México Universidad Nacional Autónoma de México Ciudad de México Mexico.
  2. Juan Antonio González-Barrios: Laboratorio de Medicina Genómica, Hospital Regional "Primero de Octubre" ISSSTE, 07300, México Laboratorio de Medicina Genómica Ciudad de México Mexico.
  3. Celia Piña-Leyva: Laboratorio de Medicina Genómica, Hospital Regional "Primero de Octubre" ISSSTE, 07300, México Laboratorio de Medicina Genómica Ciudad de México Mexico.
  4. Hayde Nallely Moreno-Sandoval: Laboratorio de Medicina Genómica, Hospital Regional "Primero de Octubre" ISSSTE, 07300, México Laboratorio de Medicina Genómica Ciudad de México Mexico.
  5. Manuel Lara-Lozano: Laboratorio de Medicina Genómica, Hospital Regional "Primero de Octubre" ISSSTE, 07300, México Laboratorio de Medicina Genómica Ciudad de México Mexico.
  6. Leonardo Rodríguez-Sosa: Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad Universitaria, C. P. 04510, México Universidad Nacional Autónoma de México Ciudad de México Mexico. ORCID

Abstract

Crayfish serve as a model for studying the effect of environmental lighting on locomotor activity and neuroendocrine functions. The effects of light on this organism are mediated differentially by retinal and extraretinal photoreceptors located in the cerebroid ganglion and the pleonal nerve cord. However, some molecular aspects of the phototransduction cascade in the pleonal extraretinal photoreceptors remain unknown. In this study, transcriptome data from the pleonal nerve cord of the crayfish (Girard,1852) were analyzed to identify transcripts that potentially interact with phototransduction process. The Illumina MiSeq System and the pipeline Phylogenetically Informed Annotation (PIA) were employed, which places uncharacterized genes into pre-calculated phylogenies of gene families. Here, for the first time 62 transcripts identified from the pleonal nerve cord that are related to light-interacting pathways are reported; they can be classified into the following 11 sets: 1) retinoid pathway in vertebrates and invertebrates, 2) photoreceptor specification, 3) rhabdomeric phototransduction, 4) opsins 5) ciliary phototransduction, 6) melanin synthesis, 7) pterin synthesis, 8) ommochrome synthesis, 9) heme synthesis, 10) diurnal clock, and 11) crystallins. Moreover, this analysis comparing the sequences located on the pleonal nerve cord to eyestalk sequences reported in other studies reveals 94-100% similarity between the 55 common proteins identified. These results show that both retinal and pleonal non-visual photoreceptors in the crayfish equally expressed the transcripts involved in light detection. Moreover, they suggest that the genes related to ocular and extraocular light perception in the crayfish use biosynthesis pathways and phototransduction cascades commons.

Keywords

Associated Data

Dryad | 10.5061/dryad.pg4f4qrqp

References

  1. J Exp Biol. 2008 Nov;211(Pt 21):3454-66 [PMID: 18931318]
  2. Proc Natl Acad Sci U S A. 2002 Aug 6;99(16):10581-6 [PMID: 12136129]
  3. Synapse. 2007 Oct;61(10):801-8 [PMID: 17598151]
  4. Nat Biotechnol. 2011 May 15;29(7):644-52 [PMID: 21572440]
  5. J Exp Biol. 1984 Mar;109:291-306 [PMID: 6736864]
  6. Synapse. 2011 Jun;65(6):497-504 [PMID: 20936686]
  7. Comp Biochem Physiol B Biochem Mol Biol. 2018 Jul;221-222:1-10 [PMID: 29654886]
  8. Gen Physiol Biophys. 2018 Jan;37(1):13-21 [PMID: 29125129]
  9. J Mol Biol. 2016 Sep 25;428(19):3850-68 [PMID: 27515397]
  10. Genome Res. 2007 Jun;17(6):960-4 [PMID: 17568012]
  11. PLoS One. 2021 Mar 25;16(3):e0249215 [PMID: 33765072]
  12. Comp Biochem Physiol C Toxicol Pharmacol. 2006 Mar-Apr;142(3-4):220-230 [PMID: 16298168]
  13. Pharmacol Rev. 2017 Jul;69(3):256-297 [PMID: 28626043]
  14. Neuron. 1990 May;4(5):711-23 [PMID: 2344408]
  15. J Gen Physiol. 1982 Feb;79(2):313-32 [PMID: 7057163]
  16. Trends Immunol. 2008 Jun;29(6):263-71 [PMID: 18457993]
  17. Nucleic Acids Res. 2016 Jul 8;44(W1):W3-W10 [PMID: 27137889]
  18. Mol Genet Genomics. 2020 Mar;295(2):299-311 [PMID: 31724065]
  19. Trends Genet. 2000 Jun;16(6):276-7 [PMID: 10827456]
  20. Brain Res. 2008 Aug 15;1225:3-16 [PMID: 18538313]
  21. Elife. 2018 May 29;7: [PMID: 29809157]
  22. J Neurosci. 1996 Feb 15;16(4):1511-22 [PMID: 8778301]
  23. Biochim Biophys Acta. 2005 May 30;1740(2):122-31 [PMID: 15949678]
  24. Biol Bull. 2017 Aug;233(1):96-110 [PMID: 29182504]
  25. Microbiol Spectr. 2017 Mar;5(2): [PMID: 28256187]
  26. Oncol Lett. 2019 May;17(5):4183-4187 [PMID: 30944614]
  27. Eur J Biochem. 1996 Feb 1;235(3):449-65 [PMID: 8654388]
  28. Proc Natl Acad Sci U S A. 2008 Oct 7;105(40):15576-80 [PMID: 18832159]
  29. Mech Dev. 2016 Nov;142:50-61 [PMID: 27455861]
  30. FEBS J. 2008 Jan;275(1):138-47 [PMID: 18039331]
  31. Science. 2004 Oct 29;306(5697):869-71 [PMID: 15514158]
  32. Dev Neurobiol. 2016 Nov;76(11):1266-1274 [PMID: 26914477]
  33. PLoS Genet. 2016 May 19;12(5):e1006054 [PMID: 27195754]
  34. FEBS Lett. 1993 Jan 11;315(3):287-92 [PMID: 8422920]
  35. IUBMB Life. 2013 Apr;65(4):334-40 [PMID: 23436441]
  36. Synapse. 2008 Sep;62(9):643-52 [PMID: 18563837]
  37. Appl Microbiol Biotechnol. 2012 Feb;93(3):931-40 [PMID: 22173481]
  38. Chronobiol Int. 2009 Aug;26(6):1136-68 [PMID: 19731110]
  39. J Biol Chem. 2017 Jul 7;292(27):11280-11299 [PMID: 28500133]
  40. Mol Microbiol. 2019 Aug;112(2):649-666 [PMID: 31116900]
  41. Sci Rep. 2019 Sep 10;9(1):12930 [PMID: 31506557]
  42. Curr Microbiol. 2018 Jun;75(6):684-693 [PMID: 29380042]
  43. Nat Protoc. 2013 Aug;8(8):1494-512 [PMID: 23845962]
  44. Prog Biophys Mol Biol. 2014 Jul;115(1):52-67 [PMID: 24582830]
  45. J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2015 Dec;201(12):1137-45 [PMID: 26445969]
  46. BMC Bioinformatics. 2014 Nov 19;15:350 [PMID: 25407802]
  47. Comp Biochem Physiol. 1966 Oct;19(2):409-15 [PMID: 5969688]
  48. BMC Bioinformatics. 2014 Jul 02;15:230 [PMID: 24990571]
  49. Brain Res. 1993 Jul 30;618(1):32-40 [PMID: 8402176]
  50. Science. 1991 Aug 2;253(5019):551-5 [PMID: 1857984]
  51. Gene. 2015 Feb 15;557(1):28-34 [PMID: 25479010]

Word Cloud

Created with Highcharts 10.0.0pleonalphototransductionnervecordphotoreceptorscrayfishsynthesislightextraretinaltranscriptsgenesretinallocatedidentifiedrelatedlight-interactingpathwaysreported11photoreceptoropsinsMoreoversequencesCrayfishservemodelstudyingeffectenvironmentallightinglocomotoractivityneuroendocrinefunctionseffectsorganismmediateddifferentiallycerebroidganglionHowevermolecularaspectscascaderemainunknownstudytranscriptomedataGirard1852analyzedidentifypotentiallyinteractprocessIlluminaMiSeqSystempipelinePhylogeneticallyInformedAnnotationPIAemployedplacesuncharacterizedpre-calculatedphylogeniesgenefamiliesfirsttime62canclassifiedfollowingsets:1retinoidpathwayvertebratesinvertebrates2specification3rhabdomeric45ciliary6melanin7pterin8ommochrome9heme10diurnalclockcrystallinsanalysiscomparingeyestalkstudiesreveals94-100%similarity55commonproteinsresultsshownon-visualequallyexpressedinvolveddetectionsuggestocularextraocularperceptionusebiosynthesiscascadescommonsTranscriptionalidentificationCaudalphotoresponse

Similar Articles

Cited By