MicroRNAs as Biomarkers and Therapeutic Targets in Doxorubicin-Induced Cardiomyopathy: A Review.

Liuying Chen, Yizhou Xu
Author Information
  1. Liuying Chen: Zhejiang Chinese Medical University, Hangzhou, China.
  2. Yizhou Xu: Department of Cardiology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China.

Abstract

Doxorubicin is a broad-spectrum chemotherapy drug applied in antitumor therapy. However, its clinical utility is limited by its fatal cardiotoxicity. Doxorubicin (DOX)-induced cardiomyopathy (DIC) begins with the first DOX dose and is characterized by being cumulative dose-dependent, and its early diagnosis using common detection methods is very difficult. Therefore, it is urgent to determine the underlying mechanism of DIC to construct treatment strategies for the early intervention before irreversible damage to the myocardium occurs. Growing evidence suggests that microRNAs (miRNAs) play regulatory roles in the cardiovascular system. miRNAs may be involved in DIC by acting through multiple pathways to induce cardiomyocyte injury. Recent studies have shown that the dysregulation of miRNA expression can aggravate the pathological process of DIC, including the induction of oxidative stress, apoptosis, ion channel dysfunction and microvascular dysfunction. Current findings on the roles of miRNAs in DIC have led to a wide range of studies exploring candidate miRNAs to be utilized as diagnostic biomarkers and potential therapeutic targets for DIC. In this review, we discuss frontier studies on the roles of miRNAs in DIC to better understand their functions, develop relevant applications in DIC, discuss possible reasons for the limitations of their use and speculate on innovative treatment strategies.

Keywords

References

  1. Mol Cell Proteomics. 2014 Jan;13(1):18-29 [PMID: 24068033]
  2. Heart Fail Rev. 2018 Jan;23(1):109-122 [PMID: 28944400]
  3. Ann Transl Med. 2020 May;8(10):647 [PMID: 32566584]
  4. Oncotarget. 2016 Sep 20;7(38):62312-62326 [PMID: 27694688]
  5. Exp Ther Med. 2016 Jun;11(6):2407-2412 [PMID: 27284328]
  6. J Mol Cell Cardiol. 2020 Mar;140:56-67 [PMID: 32135167]
  7. Aging (Albany NY). 2016 Jan;8(1):192-207 [PMID: 26837315]
  8. Med Sci Monit. 2020 Mar 18;26:e920557 [PMID: 32186283]
  9. J Cell Biochem. 2020 Feb;121(2):1747-1758 [PMID: 31633225]
  10. Nature. 2008 Dec 18;456(7224):980-4 [PMID: 19043405]
  11. Mol Cancer. 2020 Jan 10;19(1):6 [PMID: 31924214]
  12. BMB Rep. 2010 Mar;43(3):158-63 [PMID: 20356454]
  13. Cardiovasc Res. 2020 Sep 1;116(11):1805-1819 [PMID: 32638021]
  14. Int J Cardiol. 2020 May 15;307:146-151 [PMID: 31611081]
  15. Life Sci. 2017 Jul 1;180:160-170 [PMID: 28478263]
  16. Biomed Pharmacother. 2019 Jul;115:108883 [PMID: 31004989]
  17. J Clin Oncol. 2016 Mar 10;34(8):854-62 [PMID: 26700126]
  18. Life Sci. 2019 Sep 1;232:116623 [PMID: 31279781]
  19. J Cell Physiol. 2018 Oct;233(10):6344-6351 [PMID: 29665007]
  20. Ann Oncol. 2002 May;13(5):699-709 [PMID: 12075737]
  21. Cell Death Differ. 2018 Nov;25(10):1732-1748 [PMID: 29511336]
  22. Cardiovasc Res. 2020 Sep 1;116(11):1820-1834 [PMID: 32683451]
  23. J Am Coll Cardiol. 2014 Sep 2;64(9):938-45 [PMID: 25169180]
  24. Oxid Med Cell Longev. 2021 Jan 26;2021:8860883 [PMID: 33574984]
  25. Cell Cycle. 2014;13(11):1708-16 [PMID: 24675890]
  26. Cancer Res. 1983 Oct;43(10):4543-51 [PMID: 6309369]
  27. Prog Cardiovasc Dis. 2007 Mar-Apr;49(5):330-52 [PMID: 17329180]
  28. Cardiovasc Res. 2009 Apr 1;82(1):21-9 [PMID: 19147652]
  29. Genes (Basel). 2020 Apr 08;11(4): [PMID: 32276354]
  30. Nat Biotechnol. 2008 Apr;26(4):407-15 [PMID: 18392026]
  31. Redox Biol. 2018 May;15:284-296 [PMID: 29304479]
  32. J Mol Cell Cardiol. 2012 Jan;52(1):13-20 [PMID: 21801730]
  33. Nat Med. 2012 Nov;18(11):1639-42 [PMID: 23104132]
  34. Nat Med. 2007 Apr;13(4):486-91 [PMID: 17401374]
  35. Int J Mol Med. 2021 Jul;48(1): [PMID: 33982775]
  36. Cell Death Dis. 2015 May 07;6:e1754 [PMID: 25950484]
  37. Drug Deliv. 2019 Dec;26(1):45-50 [PMID: 30744440]
  38. Biochem Soc Trans. 2018 Feb 19;46(1):11-21 [PMID: 29196609]
  39. J Allergy Clin Immunol. 2018 Apr;141(4):1202-1207 [PMID: 29074454]
  40. Blood. 2010 Dec 2;116(23):e118-27 [PMID: 20733160]
  41. Life Sci. 2020 Nov 1;260:118216 [PMID: 32768582]
  42. Biochim Biophys Acta Mol Cell Res. 2018 May;1865(5):721-733 [PMID: 29499228]
  43. J Biol Chem. 2010 Jan 1;285(1):793-804 [PMID: 19901028]
  44. Cardiovasc Res. 2006 Jul 15;71(2):310-21 [PMID: 16581043]
  45. Mol Biosyst. 2014 Nov;10(11):2775-82 [PMID: 25177824]
  46. Biochem Biophys Res Commun. 2020 Jan 8;521(2):420-426 [PMID: 31672275]
  47. Elife. 2020 Jan 16;9: [PMID: 31944177]
  48. Environ Toxicol Pharmacol. 2012 Mar;33(2):312-7 [PMID: 22301161]
  49. Life Sci. 2017 Jan 15;169:69-75 [PMID: 27633839]
  50. Int J Mol Sci. 2019 May 14;20(10): [PMID: 31091723]
  51. Sci Rep. 2017 Sep 19;7(1):11879 [PMID: 28928469]
  52. Antioxid Redox Signal. 2019 Jun 20;30(18):2110-2153 [PMID: 28398124]
  53. Cell Death Dis. 2019 Sep 11;10(9):668 [PMID: 31511497]
  54. Circ Res. 2009 Sep 11;105(6):585-94 [PMID: 19679836]
  55. Int J Mol Sci. 2015 Jun 26;16(7):14511-25 [PMID: 26132560]
  56. JACC Basic Transl Sci. 2018 Dec 31;3(6):861-870 [PMID: 30623145]
  57. Circ Res. 2008 Nov 21;103(11):1270-9 [PMID: 18948619]
  58. Oxid Med Cell Longev. 2019 Nov 3;2019:1512326 [PMID: 31781322]
  59. Biomed Pharmacother. 2020 Nov;131:110709 [PMID: 32937248]
  60. Biochem Biophys Res Commun. 2020 Oct 29;532(1):60-67 [PMID: 32828538]
  61. Int J Med Sci. 2020 Jun 5;17(10):1415-1427 [PMID: 32624698]
  62. Circ Res. 2007 Feb 16;100(3):416-24 [PMID: 17234972]
  63. Nat Commun. 2012;3:1078 [PMID: 23011132]
  64. Biomed Pharmacother. 2020 Mar;123:109751 [PMID: 31958751]
  65. Acta Pharmacol Sin. 2018 Jul;39(7):1073-1084 [PMID: 29877320]
  66. Circ Res. 2018 Jan 19;122(2):246-254 [PMID: 29133306]
  67. J Clin Med. 2020 May 11;9(5): [PMID: 32403263]
  68. J Clin Invest. 2014 Feb;124(2):617-30 [PMID: 24382354]
  69. J Am Heart Assoc. 2012 Dec 31;2(1):e005645 [PMID: 23525412]
  70. Dev Cell. 2015 Aug 24;34(4):387-99 [PMID: 26256209]
  71. Biomed Res Int. 2020 Mar 1;2020:5107193 [PMID: 32190669]
  72. FEBS Lett. 2004 Nov 19;577(3):483-90 [PMID: 15556633]
  73. J Am Heart Assoc. 2017 Apr 4;6(4): [PMID: 28377429]
  74. J Cell Mol Med. 2018 Dec;22(12):6249-6261 [PMID: 30338626]
  75. Ann Clin Lab Sci. 2017 Mar;47(2):115-119 [PMID: 28442511]
  76. Oncol Lett. 2018 Jun;15(6):10037-10046 [PMID: 29928373]
  77. Med Sci Monit. 2020 Mar 14;26:e920394 [PMID: 32170053]
  78. Stem Cell Res Ther. 2015 Jun 24;6:116 [PMID: 26104315]
  79. Oxid Med Cell Longev. 2020 Nov 19;2020:8819771 [PMID: 33274007]
  80. Science. 2002 Mar 29;295(5564):2450-2 [PMID: 11884717]
  81. J Mol Cell Cardiol. 2012 Jun;52(6):1213-25 [PMID: 22465037]
  82. Oxid Med Cell Longev. 2015;2015:597032 [PMID: 26137188]
  83. Biochem Pharmacol. 2018 Apr;150:181-190 [PMID: 29458045]
  84. Antioxid Redox Signal. 2018 Mar 10;28(8):711-732 [PMID: 28661724]
  85. Cell Death Differ. 2017 Feb;24(2):343-356 [PMID: 27911441]
  86. Biochem Biophys Res Commun. 2020 Jan 8;521(2):485-491 [PMID: 31677784]
  87. Oncotarget. 2017 Jan 24;8(4):6994-7002 [PMID: 28052002]
  88. Life Sci. 2001 Jan 12;68(8):889-901 [PMID: 11213359]
  89. Mol Ther. 2019 Jan 2;27(1):17-28 [PMID: 30527757]
  90. Mol Med Rep. 2010 Mar-Apr;3(2):199-204 [PMID: 21472222]
  91. BMC Cardiovasc Disord. 2020 Feb 3;20(1):43 [PMID: 32013934]
  92. Nat Med. 2016 May;22(5):547-56 [PMID: 27089514]
  93. Cardiovasc Res. 2010 Sep 1;87(4):656-64 [PMID: 20495188]
  94. Mol Pharmacol. 2019 Aug;96(2):219-232 [PMID: 31164387]
  95. Circ Res. 2020 Mar 27;126(7):926-941 [PMID: 32213135]
  96. Cell Death Differ. 2020 Feb;27(2):540-555 [PMID: 31209361]

Word Cloud

Created with Highcharts 10.0.0DICmiRNAstreatmentrolesstudiesDoxorubicincardiotoxicityDOXearlystrategiesmicroRNAsdysfunctionbiomarkersdiscussbroad-spectrumchemotherapydrugappliedantitumortherapyHoweverclinicalutilitylimitedfatal-inducedcardiomyopathybeginsfirstdosecharacterizedcumulativedose-dependentdiagnosisusingcommondetectionmethodsdifficultThereforeurgentdetermineunderlyingmechanismconstructinterventionirreversibledamagemyocardiumoccursGrowingevidencesuggestsplayregulatorycardiovascularsystemmayinvolvedactingmultiplepathwaysinducecardiomyocyteinjuryRecentshowndysregulationmiRNAexpressioncanaggravatepathologicalprocessincludinginductionoxidativestressapoptosisionchannelmicrovascularCurrentfindingsledwiderangeexploringcandidateutilizeddiagnosticpotentialtherapeutictargetsreviewfrontierbetterunderstandfunctionsdeveloprelevantapplicationspossiblereasonslimitationsusespeculateinnovativeMicroRNAsBiomarkersTherapeuticTargetsDoxorubicin-InducedCardiomyopathy:Reviewdoxorubicinstrategy

Similar Articles

Cited By